CSCI 461: Computer Graphics
Middlebury College, Spring 2025

Lecture 04: Shading

By the end of this lecture, you will be able to:

e compute the ambient, diffuse and specular contributions to the color at a surface point,
e cast asecondary ray to a light source to determine if a pointis in a shadow,
o cast secondary rays off of reflective materials.

Our scenes have looked kind of 2d. Shading will make them look like they're in 3d!

Shading is the process of darkening areas that don't
face a light source, and brightening those that do.

WARNING: shading versus reality!

e All of the shading in this chapter seems like enormous hacks. Is that
true?

Yes. However, they are carefully designed hacks that have proven useful 1n prac-
tice. In the long run, we will probably have better-motivated algorithms that in-
clude physics, psychology, and tone-mapping. However, the improvements 1n
image quality will probably be incremental.

From FAQ in Chapter 10 of Fundamentals of Computer Graphics.

How do we see color? Light travels from a source and
reflects off of objects.

Two ingredients: light sources and materials.

Ingredient #1: Light sources have a color, and a
location or direction.

We'll mostly work with a mix of "point" and "directional" lights.

A
S

S

Area lights are more realistic, but harder (and more
expensive) to model.

Ingredient #2: Materials reflect certain light
components, absorb others.

N/

| JOTR PR

Things we need to consider:

e albedo: fraction of incoming light diffusely reflected,
e properties: in what direction is light reflected?

We will look at matte-like, plastic-like, mirror-like and also translucent materials.

Our shading equation (Phong Reflection Model):
ambient + diffuse + specular contributions.

Ambient Diffuse Specular = Phong Reflection
& d S [N
%. ilm\'\d\'\‘*\
Works really well if we want to render plasti (ea\ot)
(_Y‘, %\b>

10

The ambient contribution (/) provides background lighting.

Iq_ = cd. km
L \ Lo
c.oneoncn'\’msb M‘:’n
mu,“' \ Ph cA'\'\ on!
Km

T.kaf KM'P CO.,
la, 9 = K,y c“& N

&
Veo%-w\w\’t\?\a (ow"f , Qg KM>

11

How does the angle between 1 and linfluence the illumination?

CO0s© 3&

§ =0 cx3© = \
s+ (M) %0=0

12

Light scatters in all directions across diffuse (matte-like) surfaces (/).
alelys use & wn‘\' ‘M—O\or

S - &
o = MM‘Q -(J N ,:\ - ﬁ"“hcw
w1 of Lall= \\S\:\\:\ —E SN{-M
©

Lambrt & lan’ ?

Ii v 05O
A N

I‘\ A hol Km

KI.\ - ‘cwmw(;‘\.'i 0)

of

-—
—

—

AP C.lkml;\\ozl

13

Specular term (/) adds a highlight to glossy surfaces.

.(s\ cL I v BsC
. L""__,'A
eV

veflection vec\ov -;’

J.'b \ 2
4 3 ¢ /7 N i
& /*‘\L»" T = Jc(zc»Sﬁ)n
\] § e, ©
P g v')\
. e
-:}> \\ 25 = W2

P ShMIesS

Ig= Caks max(oﬂ\o? '

14

The Phong Reflection Model: how much a surface
point is illuminated by light sources.

—
—

I = c,k,, + cik,, max (O, n - l) + ciks max(0,

7 ou* w “AS

e 7:unit surface normal,
e [: unit vector from surface point to light,

e 7 = —l 4 2(l - n)n (reflection of [across n),
e ©: unit vector from surface point to eye,
e p:shininess

v-Tr

15

Calculating normal vectors.

Sphere?

16

Practice exercise!

Click to open the editor.

17

file:///Users/philip/Documents/github/csci461s25/chapter04/index.html#exercise1-editor

What about shadows’

1’

— £ N A Pa.\t

/

Cast a ray from intersection point to light source.

No intersection? use I,, otherwise add I and .

18

What about mirrors?

Cast a ray from intersection point in reflection direction (reflect ray direction across 7).

<

>

19

Computing the reflection direction.

® cefle o\-'mé -933\‘\' Ave glvon @ mucnn T gul¥aces
'\Mv“;"a.,at\o\
O
P
i N
%\ / s
— e —
= -
\?— S - Q, + Z(L Y\B & ceflect -—fk' LSS —Ys\.
e ? l '\V\ - 5
o i -r for L

sgecwor g = ca ks max(o VT

Max (o,@-?)) P8 T- S, /._\X

.
3 ol

20

Pseudocode for a ray tracer with what we covered today:

1 function computeColor(ray, currentDepth)

2

3 // initialization and check for maximum recursion depth (ray bounces)

4 color = background sky color

5 if (currentDepth > maxDepth) return color

6

7 // check if any intersection occurs

8 if (ray does not intersect any object) return color

9

10 // initialize to ambient color term

11 color = Ia

12

13 // check if this point is in the shadow of another object

14 shadowRay = new ray from intersection point to light

15 if (shadowRay intersects an object) return color // only keep ambient term
16

17 // not in a shadow: add other terms and check if secondary rays are needed
18 add diffuse (Id) and specular (Is) terms to color

19 if (intersection object is mirror) {
20 calculate reflectionDirection
21 reflectedRay = new ray from intersection point in reflectionDirection
22 reflectionColor = computeColor(reflectedRay, currentDepth + 1)
23 add reflectionColor to color (possibly scale)
24 }
25

N
(o))}

return color

Limit number of bounces in recursive ray tracer.

'J—"-'——__?.‘.'_.-;b..-lqi!,
J

i .

;
N
|

|

g
iy

22

Summary

e Calculate color =ambient + diffuse + specular terms.

e Good idea to write a general function to determine intersection of ray with
objects in scene (this is why both Sphere and Triangle classesin Lab 2 had
a similar intersect function).

e You will need to return information about the intersection as well (point,
normal, material) - not just £ anymore!

23

