CSCI 461: Computer Graphics Middlebury College, Spring 2025

Lecture 2B: Linear Algebra (Matrices)

By the end of today's lecture, you will be able to:

- multiply a matrix with a vector (and use glMatrix vecN.transformMatN),
- multiply a matrix with another matrix (and use glMatrix matN.multiply),
- invert a 2x2 matrix (by hand) and 3x3 matrices with glMatrix matN.invert,
- interpolate parameters defined at chosen frames with either lines or cubic curves,
- apply **de Casteljau's algorithm** to evaluate and render a cubic Bézier curve.

mMatN), tiply), nvert, oic curves, ve.

EXTREME

TREME

Animation artists specify scene parameters at selected frames. Figuring out what happens in between frames is called inbetweening.

$$h(t) = at t b \qquad a, b \text{ constants to Figures}$$

in
$$h_0 = at_0 + b$$

Thus
$$h_1 = at_1 + b$$

This leaves us with two equations and two unknowns (a and b).

$$h_{0} = a t_{0} + b$$

$$h_{1} = a t_{1} + b$$

$$\vec{h} = a \vec{t} + b\vec{1}$$

$$in words; \vec{h} = a t t b\vec{1}$$

$$in words; \vec{h} = b = t_{0} = combination of t and \vec{1}$$

$$can also write as; \vec{h} = t_{0} = t_{0} = A \vec{c}$$

$$matrix = t_{0} = a t_{0}$$

$$\sum_{xz = matrix} multiple$$

-vedor ultiplication

4

To solve this equation for x, we can multiply both sides by a^{-1} .

$$ax = b$$

$$a^{\dagger}a x = a^{-\dagger}b$$

$$a^{\dagger}x = a^{-\dagger}b$$

5

We can use the same idea with matrices: multiply both sides by the "inverse" of our matrix.

6

There's a formula for the inverse of 2x2 matrices!

Matrix-matrix multiplication.

$$C = AB$$

$$= \begin{bmatrix} a & oo & a & oi \\ a & i & a & i \end{bmatrix} \begin{bmatrix} b & oo & b & oi \\ b & i & b & i \end{bmatrix}$$

$$= \begin{bmatrix} -a & -i & -i & i \\ -a & -i & -i & i \end{bmatrix} \begin{bmatrix} i & i & i & -i \\ b & b & i & i \end{bmatrix} = \begin{bmatrix} Ai & -i & a & -i \\ -a & -i & -i & -i & -i \end{bmatrix}$$

$$= \begin{bmatrix} a & oo & b & i & -i & -i \\ -a & -i & -i & -i & -i & -i \\ -a & -i & -i & -i & -i & -i \\ -a & -i & -i & -i & -i & -i \\ -a & -i & -i & -i & -i & -i \\ -a & -i & -i & -i & -i & -i \\ -a & -i & -i & -i & -i & -i \\ -a & -i & -i & -i & -i & -i \\ -a & -i & -i & -i & -i & -i \\ -a & -i & -i & -i & -i & -i \\ -a & -i & -i \\ -a & -i & -i \\ -a & -i & -i & -$$

0. p1

Exercise: calculate what $\mathbf{A}^{-1}\mathbf{A}$ is equal to.

$$\mathbf{A} = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix}, \quad \mathbf{A}^{-1} = \frac{1}{a_{0,0}a_{1,1} - a_{0,1}a_{1,0}} \begin{bmatrix} a_{1,1} & -a_{0,1} \\ -a_{1,0} & a_{0,0} \end{bmatrix}.$$

$$\mathbf{A}^{'} \mathbf{A} = \frac{1}{d} \begin{bmatrix} a_{11} & -a_{01} \\ -a_{10} & a_{00} \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{00} \\ -a_{10} & a_{00} \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{00} \\ -a_{10} & a_{00} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{10} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a_{11} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{11} \\ -a_{11} & a$$

Let's get back to our goal of linear interpolation.

At t=0.5 seconds, let the ball have a height of 0.25 (meters) and at t=0.75 seconds, the height of the ball is 2 meters. Using linear interpolation, determine an expression for the height as a function of t.

1. Construct the matrix \mathbf{A} and right-hand-side vector b.

2. Compute the matrix inverse \mathbf{A}^{-1} . 3. Compute \vec{c} from the matrix-vector $\vec{c} = \mathbf{A}^{-1} \vec{b}$.

> ginatrix uses column-major order $\vec{c} = A^{-1}\vec{h}$ [a, b] [a, c, b, d] in column-major $h(t) = at + b \qquad \vec{x} = \begin{bmatrix} a \\ b \end{bmatrix}$ $\vec{y} = \begin{bmatrix} a \\ -3 \end{bmatrix}$

Using **glMatrix** to do this for us...

At t = 0.5 seconds, let the ball have a height of 0.25 (meters) and at t = 0.75 seconds, the height of the ball is 2 meters. Using linear interpolation, determine an expression for the height as a function of t.

BUG ALERT: glMatrix reads entries in COLUMN-MAJOR order! $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \xrightarrow{} A[o] \xrightarrow{} a \\ A[i] \xrightarrow{} C \\ A[2] \xrightarrow{} A$

Putting this together for several keys, we get an animation that looks like this (see the demo in the notes).

Our animation is kind of choppy. Let's try to interpolate the keys using a *cubic* curve instead.

We'll assume a curve that looks like:

$$h(t) = a t^3 + b t^2 + c t + d.$$

So we need to figure out a, b, c, and d. It's the same procedure as before - we're just working with 4d vectors and 4x4 matrices.

$$\begin{split} \begin{pmatrix} h_0 \\ h_1 \\ = a t_1^3 + b t_0^2 + c t_0 + d(i) \\ h_1 \\ = a t_1^3 + b t_1^2 + c t_1 + d(i) \\ h_2 \\ = a t_2^3 + b t_2^2 + c t_2 + d(i) \\ h_3 \\ = a t_3^3 + b t_3^2 + c t_3 + d(i) \\ \hline h \\ = \begin{bmatrix} t_0^3 & t_0^2 & t_0 & i \\ t_1^3 & t_1^2 & t_1 & i \\ t_2^3 & t_3^2 & t_3 & i \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ d \end{bmatrix}$$

Exercise: use glMatrix to interpolate the following (time, height) keys, and then evaluate the curve at t = 0.75.

Useful functions:

- vec4.fromValues
- mat4.fromValues
- vec4.transformMat4

Remember that glMatrix reads entries in column-major order.

Look up the glMatrix documentation!

14

Possible implementation with glMatrix

```
1 // given data
 2 \text{ const } t = [0, 0.25, 0.5, 1];
 3 \text{ const } h = [1, 0.25, 0.125, 0];
 4
 5 // setup matrix
 6 let A = mat4.create();
7 for (let i = 0; i < 4; i++) {
   A[i] = Math.pow(t[i], 3);
8
9 A[i + 4] = t[i] * t[i];
10 A[i + 8] = t[i];
11 A[i + 12] = 1.0;
12 }
13
14 // compute inverse
15 const Ainv = mat4.invert(mat4.create(), A);
16
17 // solve system of equations
18 const c = vec4.transformMat4(vec4.create(), h, Ainv);
19
20 // determine height at t = 0.75
21 const time = 0.75;
22 const time2 = time * time;
23 let ht = time * time2 * c[0] + time2 * c[1] + time * c[2] + c[3];
```


But interpolation is still not great: the curve might not prescribe the motion we want.

Instead we can use Bézier curves: let the two interior points allow us to control the slope of the curve at the endpoints.

17

Two curves in Lab 1: one for downwards motion and one for upwards motion.

Summary

- First lab on Thursday!
 - You'll implement your own cubic curve interpolator and evaluator.
 - You'll implement your own cubic Bézier curve evaluator and renderer.
- Remember glMatrix assumes entries are ordered in column-major order.
- Matrix-matrix multiplication with C = mat4.multiply(C, A, B) to compute C = AB (or mat2.multiply,mat3.multiply).
- Matrix-vector multiplication with b = vec4.transformMat4(b, x, A) to compute $\vec{b} = A\vec{x}$ (or vec2.transformMat2,vec3.transformMat3).
- Matrix inverse with Ainv = mat4.invert(Ainv, A) (or mat2.invert, mat3.invert).
- **Office hours :** (please come say hi!)
 - Tuesdays: 2pm 3:30pm
 - Thursdays: 2pm 3:30pm
 - Fridays: 11am 12pm