CSCI 461: Computer Graphics
Middlebury College, Fall 2025

Lecture 2B: Linear Algebra (Matrices)



By the end of today's lecture, you will be able to:

e multiply a matrix with a vector (and use glMatrix vecN.transformMatN),
e multiply a matrix with another matrix (and use glMatrixmatN.multiply),
e invert a 2x2 matrix (by hand) and 3x3 matrices with glMatrixmatN. invert,

o interpolate parameters defined at chosen frames with either lines or cubic curves,
o apply de Casteljau's algorithm to evaluate and render a cubic Bézier curve.
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Animation artists specify scene parameters at selected frames.
Figuring out what happens in between frames is called inbetweening.
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How to inBetween with a computer/mathematically? Let's try interpolation.
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This leaves us with two equations and two unknowns (a and Q)
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To solve this equation for x, we can multiply both
sides by a ..
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We can use the same idea with matrices: multiply
both sides by the "inverse" of our matrix.
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There's a formula for the inverse of 2x2 matrices!
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Matrix-matrix multiplication. A A
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Exercise: calculate what A 1A is equal to.
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Let's get back to our goal of linear interpolation.

Att = 0.5 seconds, let the ball have a height of 0.25 (meters) and att = 0.75 seconds, the

height of the ball is 2 meters. Using linear interpolation, determine an expression for the height
as a function of £.

1. Construct the matrix A and right-hand-side vector b.
2. Compute the matrix inverse A 1.

3. Compute ¢ from the matrix-vector ¢ = A~ 1b.
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Using glMatrix to do this for us...

Att = 0.5 seconds, let the ball have a height of 0.25 (meters) and att = 0.75 seconds, the
height of the ball is 2 meters. Using linear interpolation, determine an expression for the height
as a function of £.
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let rhs = vec2.fromValues(0.25, 2);

let A = mat2.fromvalues(0.5, 0.75, 1, 1);

let Ainv = mat2.invert(mat2.create(), A);

let ¢ = vec2.transformMat2(vec2.create(), rhs, Ainv);
console.log(c); // [7, -3.25]

// we can also check that A * Ainv is equal to the identity matrix
let I = mat2.multiply(mat2.create(), A, Ainv);
console.log(I); // [1, 0, 0, 1] (again printed in column-major order)

BUG ALERT: glMatrix reads entries in COLUMN-MAJOR order!
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Putting this together for several keys, we get an animation
that looks like this (see the demo in the notes).
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Our animation is kind of choppy. Let's try to
interpolate the keys using a cubic curve instead.

We'll assume a curve that looks like:
ht)=at +bt*+ct+d.

So we need to figure out a, b, ¢, and d. It's the same procedure as before - we're just working
with 4d vectors and 4x4 matrices.
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Exercise: use glMatrix to interpolate the following (time,
height) keys, and then evaluate the curve at g — (!

time height

0 1
0.2 0,25
0.5 0.125
| 0

Useful functions:

evecd.fromValues
ematd.fromValues
evecd.transformMatd

Rememberthat glMatrix reads entries in column-major order.
Look up the glMatrix documentation!

14



Possible implementation with glMatrix

// given data
const t = [0, 0.25, 0.5, 17;
const h = [1, 0.25, 0.125, 07];

// setup matrix

let A = matd.create();

for (let 1 = 0; 1 < 4; 1i++) {
A[i1] = Math.pow(t[i], 3);
A[i + 4] = t[i] * t[i];
A[i + 8] = t[i];
A[i + 12] = 1.0;
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// compute inverse

15 const Ainv = maté4.invert(matéd.create(), A);

16

17 // solve system of equations

18 const ¢ = vec4d4.transformMat4d (vecd.create(), h, Ainv);

19

20 // determine height at t = 0.75

21 const time = 0.75;

22 const time2 = time * time;

23 let ht = time * time2 * c[0] + time2 * c[1l] + time * c[2] + c[3];
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But interpolation is still not great: the curve might not
prescribe the motion we want.
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Instead we can use Bézier curves: let the two interior points
allow us to control the slope of the curve at the endpoints.
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Using de Casteljau's algorithm to evaluate a cubic
Bézier curve at some arbitrary t.
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Using de Casteljau's algorithm to render a cubic
Bézier curve.
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Two curves in Lab 1: one for downwards motion and
one for upwards motion.
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Summary

e Firstlab on Thursday! Complete Pre-Lab beforehand (linked on calendar).

= You'llimplement your own cubic curve interpolator and evaluator.
= You'll implement your own cubic Bézier curve evaluator and renderer.

e Remember glMatrix assumes entries are ordered in column-major order.
e Matrix-matrix multiplication withC = mat4.multiply(C, A, B) tocompute C = AB (or

mat2.multiply,mat3.multiply).

e Matrix-vector multiplication withb = vec4.transformMat4 (b, x, A)tocomputeb = Az (or
vec?2.transformMat2, vec3.transformMat3).
e MatrixinversewithAinv = matd4.invert(Ainv, A) (ormat2.invert,mat3.invert).

e Office hours : (please come say hi!)
= Mondays: 10am-1lam
= Tuesdays: 1lam - 11:30pm
s Thursdays: 2:30pm - 4:30pm
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