
CSCI 461: Computer Graphics

Middlebury College, Fall 2025

Lecture 2B: Linear Algebra (Matrices)

1

By the end of today's lecture, you will be able to:

multiply a matrix with a vector (and use glMatrix vecN.transformMatN),

multiply a matrix with another matrix (and use glMatrix matN.multiply),

invert a 2x2 matrix (by hand) and 3x3 matrices with glMatrix matN.invert,

interpolate parameters defined at chosen frames with either lines or cubic curves,

apply de Casteljau's algorithm to evaluate and render a cubic Bézier curve.

2

Exercise: calculate what is equal to.

Assign each group member one entry.

A
−1
A

A = [], A
−1 =

1

a0,0a1,1 − a0,1a1,0

[].a0,0 a0,1

a1,0 a1,1

a1,1 −a0,1

−a1,0 a0,0

9

Let's get back to our goal of linear interpolation.

At seconds, let the ball have a height of (meters) and at seconds, the

height of the ball is meters. Using linear interpolation, determine an expression for the height

as a function of .

t = 0.5 0.25 t = 0.75

2

t

1. Construct the matrix and right-hand-side vector .A →b

2. Compute the matrix inverse .A
−1

3. Compute from the matrix-vector .→c →c = A
−1→b

10

Using glMatrix to do this for us...

At seconds, let the ball have a height of (meters) and at seconds, the

height of the ball is meters. Using linear interpolation, determine an expression for the height

as a function of .

t = 0.5 0.25 t = 0.75

2

t

let rhs = vec2.fromValues(0.25, 2);

let A = mat2.fromValues(0.5, 0.75, 1, 1);

let Ainv = mat2.invert(mat2.create(), A);

let c = vec2.transformMat2(vec2.create(), rhs, Ainv);

console.log(c); // [7, -3.25]

// we can also check that A * Ainv is equal to the identity matrix

let I = mat2.multiply(mat2.create(), A, Ainv);

console.log(I); // [1, 0, 0, 1] (again printed in column-major order)

1

2

3

4

5

6

7

8

9

BUG ALERT: glMatrix reads entries in COLUMN-MAJOR order!

11

Putting this together for several keys, we get an animation

that looks like this (see the demo in the notes).

Linear Interpolation animate

12

Possible implementation with glMatrix

// given data

const t = [0, 0.25, 0.5, 1];

const h = [1, 0.25, 0.125, 0];

// setup matrix

let A = mat4.create();

for (let i = 0; i < 4; i++) {

 A[i] = Math.pow(t[i], 3);

 A[i + 4] = t[i] * t[i];

 A[i + 8] = t[i];

 A[i + 12] = 1.0;

}

// compute inverse

const Ainv = mat4.invert(mat4.create(), A);

// solve system of equations

const c = vec4.transformMat4(vec4.create(), h, Ainv);

// determine height at t = 0.75

const time = 0.75;

const time2 = time * time;

let ht = time * time2 * c[0] + time2 * c[1] + time * c[2] + c[3];

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

15

But interpolation is still not great: the curve might not

prescribe the motion we want.

16

Instead we can use Bézier curves: let the two interior points

allow us to control the slope of the curve at the endpoints.

17

Using de Casteljau's algorithm to evaluate a cubic

Bézier curve at some arbitrary .t

18

Using de Casteljau's algorithm to render a cubic

Bézier curve.

19

Two curves in Lab 1: one for downwards motion and

one for upwards motion.

20

Summary

First lab on Thursday! Complete Pre-Lab beforehand (linked on calendar).
You'll implement your own cubic curve interpolator and evaluator.

You'll implement your own cubic Bézier curve evaluator and renderer.

Remember glMatrix assumes entries are ordered in column-major order.

Matrix-matrix multiplication with C = mat4.multiply(C, A, B) to compute (or

mat2.multiply, mat3.multiply).

Matrix-vector multiplication with b = vec4.transformMat4(b, x, A) to compute (or

vec2.transformMat2, vec3.transformMat3).

Matrix inverse with Ainv = mat4.invert(Ainv, A) (or mat2.invert, mat3.invert).

Office hours : (please come say hi!)
Mondays: 10am - 11am

Tuesdays: 11am - 11:30pm

Thursdays: 2:30pm - 4:30pm

C = AB

→b = A→x

21

