CSCI 461: Computer Graphics
Middlebury College, Fall 2025

Lecture 2B: Linear Algebra (Matrices)

By the end of today's lecture, you will be able to:

e multiply a matrix with a vector (and use glMatrix vecN.transformMatN),
e multiply a matrix with another matrix (and use glMatrixmatN.multiply),
e invert a 2x2 matrix (by hand) and 3x3 matrices with glMatrixmatN. invert,

o interpolate parameters defined at chosen frames with either lines or cubic curves,
o apply de Casteljau's algorithm to evaluate and render a cubic Bézier curve.

pem EXTREME

EXTREME

Animation artists specify scene parameters at selected frames.
Figuring out what happens in between frames is called inbetweening.

(t.,h)

How to inBetween with a computer/mathematically? Let's try interpolation.

Wit)r ot ¢+ b Z unknoMS: g L

he 2a totd

h\ & & t‘ '\'b r A ¢’u¢“\°ﬂ<

W

This leaves us with two equations and two unknowns (a and Q)

Wez2atot b inTloduce - =[b] []

M\“-Qt\-"b
e o 1=]1]
he oot +bl
o Bl
wilke as’ \ “][]

-
solve for ¢
Mat¥ix -\ ol """\-hl e

matix A 7
M\l\"\?\\mm (1!2) c

|

To solve this equation for x, we can multiply both
sides by a ..

ar = b
oﬁia_xf' o' b
L il
= |

-\
X = o b

We can use the same idea with matrices: multiply
both sides by the "inverse" of our matrix.

ve haad AZ'—"-H

(0)

There's a formula for the inverse of 2x2 matrices!

-—

A:J' [ao,o ap,

aio ai,

|

41

o\

%
4 [T%

QA

Add

~ O\b\

OLod

w

Matrix-matrix multiplication. A A

A “-' Qoo Qo B= :» L.l
Qo ay 1o b,

A R = oo Qo |\ beo| Lo | s z
1&.\0 QA][bo| by, -} [A%
s________.J ""'—-' —

b b,

= K @s=obod & Qo) \no) \(qoak\ *"‘:ﬂ

(Q\a e Ay P) (‘\. boy ta,,

8

Exercise: calculate what A 1A is equal to.

A =

Q.o

| 41,0

ao,1

ai 1.

Al =

1

ap,0a1,1 — A0,1A1,0

a1

| — a1

Assign each group member one entry.

—ap1

ap.o_

Let's get back to our goal of linear interpolation.

Att = 0.5 seconds, let the ball have a height of 0.25 (meters) and att = 0.75 seconds, the

height of the ball is 2 meters. Using linear interpolation, determine an expression for the height
as a function of £.

1. Construct the matrix A and right-hand-side vector b.
2. Compute the matrix inverse A 1.

3. Compute ¢ from the matrix-vector ¢ = A~ 1b.

10

Using glMatrix to do this for us...

Att = 0.5 seconds, let the ball have a height of 0.25 (meters) and att = 0.75 seconds, the
height of the ball is 2 meters. Using linear interpolation, determine an expression for the height
as a function of £.

O 00O J O Ul & W IN K-

let rhs = vec2.fromValues(0.25, 2);

let A = mat2.fromvalues(0.5, 0.75, 1, 1);

let Ainv = mat2.invert(mat2.create(), A);

let ¢ = vec2.transformMat2(vec2.create(), rhs, Ainv);
console.log(c); // [7, -3.25]

// we can also check that A * Ainv is equal to the identity matrix
let I = mat2.multiply(mat2.create(), A, Ainv);
console.log(I); // [1, 0, 0, 1] (again printed in column-major order)

BUG ALERT: glMatrix reads entries in COLUMN-MAJOR order!

11

Putting this together for several keys, we get an animation
that looks like this (see the demo in the notes).

Linear Interpolation V || animate

Our animation is kind of choppy. Let's try to
interpolate the keys using a cubic curve instead.

We'll assume a curve that looks like:
ht)=at +bt*+ct+d.

So we need to figure out a, b, ¢, and d. It's the same procedure as before - we're just working
with 4d vectors and 4x4 matrices.

[\no\: a{:: t bt: y ¢ty + A0 r)
h ooty v bt ot ch vAW

hy |2 q‘t: v bhtch v
Tty bt ol ¢ A

—-n UR

-\ \ 'Lo'!‘ {sz o I_] | t
- =4
‘t% {:; ta a
-9 0" % 1JL

13

Exercise: use glMatrix to interpolate the following (time,
height) keys, and then evaluate the curve at g — (!

time height

0 1
0.2 0,25
0.5 0.125
| 0

Useful functions:

evecd.fromValues
ematd.fromValues
evecd.transformMatd

Rememberthat glMatrix reads entries in column-major order.
Look up the glMatrix documentation!

14

Possible implementation with glMatrix

// given data
const t = [0, 0.25, 0.5, 17;
const h = [1, 0.25, 0.125, 07];

// setup matrix

let A = matd.create();

for (let 1 = 0; 1 < 4; 1i++) {
A[i1] = Math.pow(t[i], 3);
A[i + 4] = t[i] * t[i];
A[i + 8] = t[i];
A[i + 12] = 1.0;

O J o Ol WD K-

=
N B O WO

}

=
S W

// compute inverse

15 const Ainv = maté4.invert(matéd.create(), A);

16

17 // solve system of equations

18 const ¢ = vec4d4.transformMat4d (vecd.create(), h, Ainv);

19

20 // determine height at t = 0.75

21 const time = 0.75;

22 const time2 = time * time;

23 let ht = time * time2 * c[0] + time2 * c[1l] + time * c[2] + c[3];

15

But interpolation is still not great: the curve might not
prescribe the motion we want.

16

Instead we can use Bézier curves: let the two interior points
allow us to control the slope of the curve at the endpoints.

17

Using de Casteljau's algorithm to evaluate a cubic
Bézier curve at some arbitrary t.

18

Using de Casteljau's algorithm to render a cubic
Bézier curve.

19

Two curves in Lab 1: one for downwards motion and
one for upwards motion.

20

Summary

e Firstlab on Thursday! Complete Pre-Lab beforehand (linked on calendar).

= You'llimplement your own cubic curve interpolator and evaluator.
= You'll implement your own cubic Bézier curve evaluator and renderer.

e Remember glMatrix assumes entries are ordered in column-major order.
e Matrix-matrix multiplication withC = mat4.multiply(C, A, B) tocompute C = AB (or

mat2.multiply,mat3.multiply).

e Matrix-vector multiplication withb = vec4.transformMat4 (b, x, A)tocomputeb = Az (or
vec?2.transformMat2, vec3.transformMat3).
e MatrixinversewithAinv = matd4.invert(Ainv, A) (ormat2.invert,mat3.invert).

e Office hours : (please come say hi!)
= Mondays: 10am-1lam
= Tuesdays: 1lam - 11:30pm
s Thursdays: 2:30pm - 4:30pm

21

