

CSCI 461: Computer Graphics

Middlebury College, Fall 2023
Lecture 01: Pixels

A note about masks.

- Please wear a mask during my office hours.
- I'll wear a mask in class during the first few weeks of the semester.
- You are encouraged to wear a mask but free to decide whether or not to wear a mask in class.

A little about me...

- Please call me Philip.
- I'm from Montreal, went to graduate school in Boston.
- Recently worked for a startup in San Francisco (living in NH).
- My favorite hike around here is the Falls of Lana/Silver Lake trail.
- I have type 1 diabetes and may need sugar if I'm hypoglycemic.
- This is my dog Leila :)

Things I am currently working on...

A little about you!

In groups of 3-4:

- Introduce yourselves!
- What is computer graphics about?

What is Computer Graphics about?

Computer graphics is about developing computer programs to create visual information.

Ti

Thin

What this course is NOT.

AUTODESK

Your job is to develop the graphics technology that artists might need.

Your job is to develop the graphics technology that artists might need.

Your job is to develop the graphics technology that artists might need.

Your job is to develop the graphics technology that artists might need.

By the end of the course you will:

- develop your own ray tracer to render complex scenes and materials,
- display and manipulate three-dimensional models using rasterization techniques (with WebGL),
- animate three-dimensional objects and physical systems.

We will use a form of specification grading.

- 13 assignments in total: 11 labs + 2 reports.
- Reports (individual) are evaluated CR/NCR:
- Report 1: reflection on discussion in week 5.
- Report 2: ShaderToy dissection.
- Labs (groups of 2-3) evaluated using EMRN model:
- (N)ot assessable: no modification to template or hard to follow.
- (R)evisions required: error or bug.
- (M)eets requirements: basic functionality works.
- (E)xceeds expectations: extensions implemented, experimentation, discussion.

We will use Ed Discussion and replit.

- Join Ed Discussion here: https://edstem.org/us/join/jNDvTh
- Join replit team here:
https://replit.com/teams/join/dwguipszohekapvtbpamcckqlbypopyxcsci461f23

What to expect in this course...

- lectures and exercises on Tuesdays,
- labs in groups on Thursdays, then 1 week to submit lab,
- feedback on current lab status (EMRN), then edit and resubmit,
- A LOT of debugging!
- have fun :)

Labs preview

Let's talk about pixels!

Our goal: assigning pixel colors.

Things to consider:

1. What is the size of the image?
2. How to represent color?
3. What is the coordinate system of the image?

We will often represent the color of a pixel using RGB values in between 0-1 (sometimes from 0-255).

Please join at slido.com at event \#3677434!

三 In an 8-bit image, there are 8 bits assigned to each pixel. How many possible colors are there for a single pixel? 24 O

81664256$16,777,216$

Voting as Anonymous

Please join at slido.com at event \#3677434!

_ If a 1200×800 image is saved in 8-bit format, how much memory does the image use? Assume the image is$=$ not compressed. not compressed.960 kB960 MB7.68 MB7.68 GB

Let's practice with Spot the Cow.

Click to open the shader editor.
(we'll look at WebGL and GLSL later in the course)

Our goal: assigning pixel colors.

Click to open the WebGL fluids demo.

quickly!

JavaScript in one slide.

```
class Pixel {
    constructor(r, g, b) {
        this.r = r;
        this.g = g;
        this.b = b;
    }
    scale(a) {
        this.r *= a;
        this.g *= a;
        this.b *= a;
    }
}
```

14
15 Pixel nrototvine set = finnction (r.a. ${ }^{\text {a }}$) \{

See you on Thursday!

- Please complete Background Form,
- Familiarize yourself with syllabus, calendar, notes from today,
- Review JavaScript (see links in notes).

