

CSCI 461: Computer Graphics

Middlebury College, Fall 2023

Lecture 01: Pixels

A note about masks.

- Please wear a mask during my office hours.
- I'll wear a mask in class during the first few weeks of the semester.
- You are encouraged to wear a mask but free to decide whether or not to wear a mask in class.

A little about me...

- Please call me Philip.
- I'm from Montreal, went to graduate school in Boston.
- Recently worked for a startup in San Francisco (living in NH).
- My favorite hike around here is the Falls of Lana/Silver Lake trail.
- I have type 1 diabetes and may need sugar if I'm hypoglycemic.
- This is my dog Leila :)

Things I am currently working on...

A little about you!

In groups of 3-4:

- Introduce yourselves!
- What is computer graphics about?

What is Computer Graphics about?

Computer graphics is about developing computer programs to create visual information.

80% – 90% of the information our brains process is **VISUAL**

What this course is NOT.

By the end of the course you will:

- develop your own ray tracer to render complex scenes and materials,
- display and manipulate three-dimensional models using rasterization techniques (with WebGL),
- animate three-dimensional objects and physical systems.

We will use a form of *specification grading*.

- 13 assignments in total: 11 labs + 2 reports.
- Reports (individual) are evaluated CR/NCR:
 - Report 1: reflection on discussion in week 5.
 - Report 2: ShaderToy dissection.
- Labs (groups of 2-3) evaluated using EMRN model:
 - (N)ot assessable: no modification to template or hard to follow.
 - (R)evisions required: error or bug.
 - (M)eets requirements: basic functionality works.
 - (E)xceeds expectations: extensions implemented, experimentation, discussion.

We will use Ed Discussion and replit.

- Join Ed Discussion here: https://edstem.org/us/join/jNDvTh
- Join replit team here:

https://replit.com/teams/join/dwguipszohekapvtbpamcckqlbypopyxcsci461f23

What to expect in this course...

- lectures and exercises on Tuesdays,
- labs in groups on Thursdays, then 1 week to submit lab,
- feedback on current lab status (EMRN), then edit and resubmit,
- A LOT of debugging!
- have fun :)

Labs preview

Let's talk about pixels!

Our goal: assigning pixel colors.

Things to consider:

- 1. What is the **size** of the image?
- 2. How to represent **color**?
- 3. What is the **coordinate system** of the image?

We will often represent the color of a pixel using RGB values in between 0 - 1 (sometimes from 0 - 255).

Please join at slido.com at event #3677434!

Please join at slido.com at event #3677434!

If a 1200 × 800 image is saved in 8-bit format, how much memory does the image use? Assume the image is not compressed.	s 23 වා
○ 960 kB	
○ 960 MB	
○ 7.68 MB	
7.68 GB	
Voting as <u>Anonymous</u>	Send

Acceptable Use - Slido Privacy

Let's practice with Spot the Cow.

Click to open the shader editor.

(we'll look at WebGL and GLSL later in the course)

	Spot ~
Veri	tex Shader Fragment Shader
	precision mediump float;
2	
3	// varyings
4	varying vec3 v Normal;
5	varying vec3 v Position;
6	varying vec3 v_Surface;
7	
8	// exercise 1: change the RGB values
9	vec3 modelColor = vec3(0.5, 0.5, 0.5);
10	
11,	void main() {
12	// model coordinates
13	<pre>float x = v_Surface.x;</pre>
14	<pre>float y = v_Surface.y;</pre>
15	<pre>float z = v_Surface.z;</pre>
16	
17	// exercise 2: type the flannel expression here!
18	
19	<pre>// vectors used in lighting calculation (more on this later)</pre>
20	<pre>vec3 l = -normalize(v_Position);</pre>
21	<pre>vec3 n = normalize(v_Normal);</pre>
22	vec3 $r = -reflect(1, n);$
23	
	// semants subject dikknes and meaning house

Our goal: assigning pixel colors.

Click to open the WebGL fluids demo.

quickly!

JavaScript in one slide.

```
1 class Pixel {
   constructor(r, g, b) {
 2
 3
   this.r = r;
 4 this.g = g;
 5 this.b = b;
 6
   }
 7
 8
    scale(a) {
 9
   this.r *= a;
10 this.g *= a;
11 this.b *= a;
12 }
13 }
14
15 Pixel_prototype_set = function(r. g. b) {
```

See you on Thursday!

- Please complete Background Form,
- Familiarize yourself with syllabus, calendar, notes from today,
- Review JavaScript (see links in notes).