Middlebury

CSCI 201: Data Structures
Fall 2024

Lecture 3T: Polymorphism

Goals for today:

Derive (inherit) child/subclasses from a parent/base/superclass using extends.
Save references to a base class in an array.

Use the protected access modifier to limit access to fields/methods.

Call the super class constructor to initialize the base object.

Introduce packages.

Use generics to define parametrized classes.

Classification of Animals

Last week we created a class called Car.

class Car { 1 Car car = new Car("Subaru", 2019);

1
2
3

-
What kinds of cars are there?

What if we were designing a class called Animal?

Classification of Animals

Mamsls Bids P Repbles Anphliam Whips WOIGAI winine Notmim
n TR o (W

|'.Ilh“ Eunlmon Laritracis

Jﬂ“‘"!ﬁi ¥ -

H H‘l FsiCaik Qokatsn Croood b CoErane Hpkisr

f:;?'! f5mo < 5 %

[Eb by N ey)]

This implies that some applications would benefit
from specializing our class definitions.

e Some methods are shared between all car/animal types.
e Some fields/methods are special for different car/animal types.

How can we achieve these?
Polymorphism (use of a single interface to create many types).

Two types of polymorphism to consider:

* Run-time polymorphism: types are decided at run-time (running java).
e Compile-time polymorphism: types are decided at compile-time (with javac).

Run-time polymorphism using inheritance.

1 package animals; 1 package animals;
2 2
3 public class Animal { 3 public class Dog extends Animal {
4 protected int numLegs; 4 public Dog(int n) {
5 5 super(4); // call the Animal constructor
6 // constructor 6 // calling super is not necessary if the
7 public Animal(int n) { 7 // superclass has a constructor with no
8 numlLegs = n; 8 // arguments
9 3} 9 3
10 10
11 public void speak() { 11 // @QOverride is optional, but good practice
12 System.out.println("Hello World); 12 @override
13 System.out.println("# legs = " + numLegs); 13 public void speak() {
14 } 14 System.out.println("Woof World");
15 } 15 System.out.println("# legs = " + numLegs);
16 }
17 }

e Animal is a superclass (base/parent class).

e Dog is a subclass (derived/child class).

e Subclass can access any public/protected fields/methods of superclass.

e Methods defined in subclass with the same signature as superclass will be overriden.
e Superclass needs to be constructed when subclass is constructed.

e Java allows you to inherit from one class (otherwise, you inherit from Object).

e Note: a package is used here to keep all animals in one subfolder.

Note that we can save an array of references to the
base type.

1 // import all classes from the animals subfolder

2 import animals.*;

3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 }

public class InheritanceExamples {

public static void main(String[] args) {

}

Animal animal
animal.speak(

int numAnimal

)i

s =

Animal[] animals

animals[0] =
animals[1l] =
animals[2]
animals[3]
animals[4]

// ~ these are all references to objects with

new
new
new
new
new

new Animal(0);

5;

= new Animal[numAnimals];
Dog();

Cat();

Sheep();

Dog();
Penguin();

// the type SUPERCLASS

for (Animal a

animals) {

// speak is overriden in the SUBCLASS

a.speak();

}

O Ul W N

Hello World, I have 0 legs
Woof World, I have 4 legs
Meow World, I have 4 legs
Baaa world, I have 4 legs
Woof World, I have 4 legs
Chirp World, I have 2 legs

Exercise: define your own animal that inherits from
the Animal class.

1 package animals;

2

3 public class Cow extends Animal {
4 public Cow(int n) {

5 super(4);

6 }

7

8 @Override

9 public void speak() {

10 System.out.println("Moo World, I have " + numLegs + " legs");
11 }

12}

Investigate!

e Canyou access the numLegs field in the InheritanceExamples PSVM?

e What happens if we make the Animal constructor protected?

e What happens if you don't override the speak method?

e What happens if numLegs was declared private in the Animal superclass?
What would you need to do to access numLegs in the speak method of the
subclasses in this case?

1 package animals; 1 package animals;

2 2

3 public class Animal { 3 public class Cow extends Animal {

4 private int numLegs; 4 public Cow(int n) {

5 5 super(4);

6 public Animal(int n) { 6 }

7 numLegs = nj 7

8 } 8 @override

9 9 public void speak() {

10 protected int numLegs() { 10 System.out.println("Moo World");
11 return numLegs; 11 System.out.println("# legs = " + numLegs());
12 } 12 }

13 } 13}

Where are we in our goals for today?

e Derive (inherit) child/subclasses from a parent/base/superclass using extends.
e Save references to a base class in an array.

Use the protected access modifier to limit access to fields/methods.

Call the super class constructor to initialize the base object.

Introduce packages.

Use generics to define parametrized classes.

Classification of Animals

— ﬂm
-r:lu---.--.
1_; TAOE g o

l:"r":l i

[Eﬂs##ﬂ"'“”;’

o E= =0 o e . K il T e A

10

What if we want to design some kind of container,

but hold anything in that container?

P EAMILY size

C e@fﬁé

(EprL ety
|"‘p n :

ik e ot =]
I r i H.'
Tl 1 ;
it
. -

11

Parametric polymorphism using generics
(checked at compile-time).

Motivation: imagine we want to create a Box class.
Boxes can hold anything.

1 class Box {

2 public boolean empty() { .

3 return false; // to be overriden e What if we had another cereal

4 } .

5} HoneyNutCheerios? Create

6 .

7 class FrootLoops {} another HoneyNutCheeriosBox
8 class FrootLoopsBox extends Box { H H %)

0 rrootioops cocest; that inherits from Box again?

10 FrootLoopsBox (FrootLoops cereal) {

1 } this.cereal = cereal; e The class design on the left makes this
13 process cumbersome.

14 public boolean empty() {

15 return cereal == null;

16}

17 }

12

Parametric polymorphism using generics
(checked at compile-time).

0 Jo U WN -

e e S
B WN R oW

15
16
17
18
19
20
21
22

class Box<T> {
T cereal; .
Box (T cereal) { e Instead, we can use generics,
this.cereal = cereal; .
) which allows us to
public boolean empty() { . .
return coroal —o bulls parametrize our classes in
) } terms of some type.
class FrootLoops {} ¢ Allows us to define one
class HoneyNutCheerios {}

interface to be instantiated
public class GenericsExample { . T
public static void main(String[] args) { Wlth SpeCIallzed typeS.

Box<FrootLoops> loops =
new Box<FrootLoops>(new FrootLoops()):;

Box<HoneyNutCheerios> cheerios = ’ UserI for thlngS llke
new Box<HoneyNutCheerios>(new HoneyNutCheerios()); Containers (next ClaSS).

Compiler will check if we're using the types correctly. For example:
Box<HoneyNutCheerios> cheerios = new Box<FrootLoops>(new FrootLoops());

will not compile!

13

Other notes and conventions with generics.

class Box<T> {
T item;

}

public class BoxExample {
public static void main(String args[]) {
// newer versions of Java allow us to do this
// saves us a bit of typing
Box<FrootLoops> frootLoops = new Box<>(new FrootLoops());
}
}

R O W oo JO0 ULk WDN K-

P

e T foratype.

e E foran element.

e K for akey.

e V foravalue.

e Generics are useful at compile-time, but type information is thrown away and not
available at run-time (called type erasure).

e We can also make sure the type T is a subclass of some type (next slide).

14

Exercise: add a toString () method for the Box
class to print out cereal label information.

Get started with this:

1
2
3
4
5
6
7
8

9
10
11
12
13 }
14

class Cereal {

private String name;
public String[] ingredients; // look this up
public int sugarPerServing; // in grams
public double servingSize; // in cups
Cereal (String name) {

this.name = name;

}

public String getName() {
return name;

}

15 class FrootLoops extends Cereal {

16
17
18
19
20 }

FrootLoops () {
super ("Froot Loops");
// TODO save Cereal fields here

0 o U WN -

11
12
13
14
15
16
17

class Box<T extends Cereal> {
T cereal;

String toString() {

}
}

// TODO print label with name,
// ingredients,
// sugarPerServing and servingSize

public class GenericsExample {
public static void main(String args[]) {

}

Box<FrootLoops> frootLoops =

new Box<>(new FrootLoops()):;

System.out.println(frootLoops);

15

See you on Thursday!

We'll introduce Collections which use generics.

Get started on Homework 2: due 9/26 at 11:59pm.

Office hours posted:
= Monday 9:30 - 10:30am
= Tuesday: 11-11:30am
= Thursday: 1:30 - 3:30pm
= Friday:2-2:30pm
Submit exit ticket 3T today.

16

