
CSCI 201: Data Structures

Fall 2024

Lecture 3T: Polymorphism

1

Goals for today:

Derive (inherit) child/subclasses from a parent/base/superclass using extends.

Save references to a base class in an array.

Use the protected access modifier to limit access to fields/methods.

Call the super class constructor to initialize the base object.

Introduce packages.

Use generics to define parametrized classes.

2

Last week we created a class called Car.

 class Car {

 ...

}

1

2

3

Car car = new Car("Subaru", 2019);1

What kinds of cars are there?

3

What if we were designing a class called Animal?

4

This implies that some applications would benefit

from specializing our class definitions.

Some methods are shared between all car/animal types.

Some fields/methods are special for different car/animal types.

How can we achieve these?

Polymorphism (use of a single interface to create many types).

Two types of polymorphism to consider:

Run-time polymorphism: types are decided at run-time (running java).

Compile-time polymorphism: types are decided at compile-time (with javac).

5

Run-time polymorphism using inheritance.

 package animals;

public class Animal {

 protected int numLegs;

 // constructor

 public Animal(int n) {

 numLegs = n;

 }

 public void speak() {

 System.out.println("Hello World);

 System.out.println("# legs = " + numLegs);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

package animals;

public class Dog extends Animal {

 public Dog(int n) {

 super(4); // call the Animal constructor

 // calling super is not necessary if the

 // superclass has a constructor with no

 // arguments

 }

 // @Override is optional, but good practice

 @Override

 public void speak() {

 System.out.println("Woof World");

 System.out.println("# legs = " + numLegs);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Animal is a superclass (base/parent class).

Dog is a subclass (derived/child class).

Subclass can access any public/protected fields/methods of superclass.

Methods defined in subclass with the same signature as superclass will be overriden.

Superclass needs to be constructed when subclass is constructed.

Java allows you to inherit from one class (otherwise, you inherit from Object).

Note: a package is used here to keep all animals in one subfolder.

6

Note that we can save an array of references to the

base type.

 // import all classes from the animals subfolder

import animals.*;

public class InheritanceExamples {

 public static void main(String[] args) {

 Animal animal = new Animal(0);

 animal.speak();

 int numAnimals = 5;

 Animal[] animals = new Animal[numAnimals];

 animals[0] = new Dog();

 animals[1] = new Cat();

 animals[2] = new Sheep();

 animals[3] = new Dog();

 animals[4] = new Penguin();

 // ^ these are all references to objects with

 // the type SUPERCLASS

 for (Animal a : animals) {

 // speak is overriden in the SUBCLASS

 a.speak();

 }

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Hello World, I have 0 legs

Woof World, I have 4 legs

Meow World, I have 4 legs

Baaa world, I have 4 legs

Woof World, I have 4 legs

Chirp World, I have 2 legs

1

2

3

4

5

6

7

Exercise: define your own animal that inherits from

the Animal class.

package animals;

public class Cow extends Animal {

 public Cow(int n) {

 super(4);

 }

 @Override

 public void speak() {

 System.out.println("Moo World, I have " + numLegs + " legs");

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

8

Investigate!

Can you access the numLegs field in the InheritanceExamples PSVM?

What happens if we make the Animal constructor protected?

What happens if you don't override the speak method?

What happens if numLegs was declared private in the Animal superclass?

What would you need to do to access numLegs in the speak method of the

subclasses in this case?

 package animals;

public class Animal {

 private int numLegs;

 public Animal(int n) {

 numLegs = n;

 }

 protected int numLegs() {

 return numLegs;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

package animals;

public class Cow extends Animal {

 public Cow(int n) {

 super(4);

 }

 @Override

 public void speak() {

 System.out.println("Moo World");

 System.out.println("# legs = " + numLegs());

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

9

Where are we in our goals for today?

Use generics to define parametrized classes.

Derive (inherit) child/subclasses from a parent/base/superclass using extends.

Save references to a base class in an array.

Use the protected access modifier to limit access to fields/methods.

Call the super class constructor to initialize the base object.

Introduce packages.

10

What if we want to design some kind of container,

but hold anything in that container?

11

Parametric polymorphism using generics

(checked at compile-time).

Motivation: imagine we want to create a Box class.

Boxes can hold anything.

class Box {

 public boolean empty() {

 return false; // to be overriden

 }

}

class FrootLoops {}

class FrootLoopsBox extends Box {

 FrootLoops cereal;

 FrootLoopsBox(FrootLoops cereal) {

 this.cereal = cereal;

 }

 public boolean empty() {

 return cereal == null;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

What if we had another cereal

HoneyNutCheerios? Create

another HoneyNutCheeriosBox

that inherits from Box again?

The class design on the left makes this

process cumbersome.

12

Parametric polymorphism using generics

(checked at compile-time).

class Box<T> {

 T cereal;

 Box(T cereal) {

 this.cereal = cereal;

 }

 public boolean empty() {

 return cereal == null;

 }

}

class FrootLoops {}

class HoneyNutCheerios {}

public class GenericsExample {

 public static void main(String[] args) {

 Box<FrootLoops> loops =

 new Box<FrootLoops>(new FrootLoops());

 Box<HoneyNutCheerios> cheerios =

 new Box<HoneyNutCheerios>(new HoneyNutCheerios());

 ...

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Instead, we can use generics,

which allows us to

parametrize our classes in

terms of some type.

Allows us to define one

interface to be instantiated

with specialized types.

Useful for things like

containers (next class).

Compiler will check if we're using the types correctly. For example:

Box<HoneyNutCheerios> cheerios = new Box<FrootLoops>(new FrootLoops());

will not compile!

13

Other notes and conventions with generics.

class Box<T> {

 T item;

}

public class BoxExample {

 public static void main(String args[]) {

 // newer versions of Java allow us to do this

 // saves us a bit of typing

 Box<FrootLoops> frootLoops = new Box<>(new FrootLoops());

 }

}

1

2

3

4

5

6

7

8

9

10

11

T for a type.

E for an element.

K for a key.

V for a value.

Generics are useful at compile-time, but type information is thrown away and not

available at run-time (called type erasure).

We can also make sure the type T is a subclass of some type (next slide).

14

Exercise: add a toString() method for the Box

class to print out cereal label information.

Get started with this:

 class Cereal {

 private String name;

 public String[] ingredients; // look this up

 public int sugarPerServing; // in grams

 public double servingSize; // in cups

 Cereal(String name) {

 this.name = name;

 }

 public String getName() {

 return name;

 }

}

class FrootLoops extends Cereal {

 FrootLoops() {

 super("Froot Loops");

 // TODO save Cereal fields here

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

class Box<T extends Cereal> {

 T cereal;

 String toString() {

 // TODO print label with name,

 // ingredients,

 // sugarPerServing and servingSize

 }

}

public class GenericsExample {

 public static void main(String args[]) {

 Box<FrootLoops> frootLoops =

 new Box<>(new FrootLoops());

 System.out.println(frootLoops);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

15

See you on Thursday!

We'll introduce Collections which use generics.

Get started on Homework 2: due 9/26 at 11:59pm.

Office hours posted:
Monday 9:30 - 10:30am

Tuesday: 11 - 11:30am

Thursday: 1:30 - 3:30pm

Friday: 2 - 2:30pm

Submit exit ticket 3T today.

16

