
CSCI 201: Data Structures

Fall 2024

Lecture 2R: Objects

1



Goals for today:

Start styling our codes nicely.

Create objects using the new keyword.

Define constructors which are called when creating objects.

Reference the current object using the this keyword.

Decide whether member variables (fields) or methods should be declared

public or private.

Use the . "dot" operator to access member variables (fields) or call methods.

Write setter and getter methods.

Make some member variables (fields) mutable or immutable.

Reinforce the decision about whether to make a method static.

2



Let's set up a few style guidelines.

 

Opening { ends first line of block (if, for, class, method).

Indent every line inside block.

Closing } should be on separate line, "undoing" indentation of block.

Use CamelCase for class names, drinkingCamelCase for variables/methods, lowercase for single words.

Use spaces between keywords and other control characters ((), {}) and operators (&&, <, etc.).

No space between semi-colon and previous character (i = 0;, not i = 0 ;).

Use a space after semi-colon and next statement (in definition of for-loop).

One line, one statement (unless comma-separated, e.g. int i = 0, j = 0).

int x = 5, y = 20;

String my_name = "Mike Wazowski"; int age = 20;

for(int i = 0; i<values.length;i++){

  if(condition) {

 

  }

  else

  {

 

  }

}

1

2

3

4

5

6

7

8

9

10

11

int x = 5, y = 20;

String myName = "Mike Wazowski";

int age = 20;

for (int i = 0; i < values.length; i++) {

  if (condition) {

 

  } else {

    

  }

}

1

2

3

4

5

6

7

8

9

10

3



Java is object-oriented.

A language is object-oriented if programs in that language are

organized by the specification and use of objects.

An object consists of (1) some internal data items along with (2)

operations that can be performed on that data.

4



Let's design and create a car!

 

 class Car {

  ...

}

1

2

3

Car car = new Car("Subaru", 2019);1

5



In groups of 3: think about the following questions.

What information about a car is publicly visible?

What information about a car can only be accessed if you're inside the car?

What is a function of a car that can be done from outside the car?

What is a function of a car that can only be done from inside the car?

What is something about a car that can change?

What is something about a car that cannot change?

6



7



Anatomy of a Java class definition.

// in a file called CarExample.java

class Car {

 

  // member variables (fields)

  String make;

  int year;

 

  // methods

  Car(String make, int year) { // constructor

    this.make = make;

    this.year = year;

  }

 

  void drive() {

    System.out.println("Starting the " + make + "...");

    System.out.println("Vroom vroom.");

  }

}

 

public class CarExample {

  public static void main(String[] args) {

    Car car = new Car("Subaru", 2019);

    car.drive();

  }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

8



Use access modifiers to control what is visible and

what is not.

public: can be accessed by code outside of the class (also inside).

private: can only be accessed by code inside the class.

Why do we use these? readability, correctness.

9



Anatomy of a Java class with access modifiers.

// in a file called CarExample.java

class Car {

 

  // member variables (fields)

  public String make;
  public int year;

  private int gear;

 

  // methods

  Car(String make, int year) { // constructor
    this.make = make;

    this.year = year;

  }

 

  public void drive() {
    System.out.println("Starting the " + make + "...");

    setGear(1); // put the car in first gear

    System.out.println("Vroom vroom.");

    honk();

  }
 

  private void setGear(int gear) {

    this.gear = gear;

  }

 
  private void honk() {

    System.out.println("beep beep");

  }

}

 
public class CarExample {

  public static void main(String[] args) {

    Car car = new Car("Honda", 2019);

    car.drive();
  }

}

1

2

3

4

5
6

7

8

9

10
11

12

13

14

15
16

17

18

19

20
21

22

23

24

25
26

27

28

29

30
31

32

33

34
35

36

10



What's with the this?

Primary uses:

Avoid ambiguity in fields and parameters (notice make, year and gear are

parameters and fields).

Pass a reference to this object to some other function. For example, imagine we

keep a reference to an instance of a Garage class called garage. Perhaps we

need to call garage.changeOil(this);

String make; // fields

int year;

int gear;

 

Car(String make, int year) { // constructor

  this.make = make;

  this.year = year;

}

 

private void setGear(int gear) {

  this.gear = gear;

}

1

2

3

4

5

6

7

8

9

10

11

12

11



Arrays can be used to hold many Car objects.

Items are initially null: we need to use new to actually create Car objects.

int nCars = 5;

Car[] cars = new Car[nCars];

cars[0] = new Car("Subaru", 2019);

cars[1] = new Car("Honda", 2021);

cars[2] = new Car("Ford", 2024);

// cars[3] and cars[4] are still null

System.out.println("Car 3 make = " + cars[3].make); // Exception!!

1

2

3

4

5

6

7

Exception in thread "main" java.lang.NullPointerException: Cannot read field

"make" because "cars[3]" is null at CarExample.main(CarExample.java:7)

12



What will be the value of same?

Go to  (event #2743882).slido.com

cars[0] = new Car("Honda", 2019);

cars[1] = new Car("Honda", 2019);

boolean same = (cars[0] == cars[1]);

There are no active polls

at the moment

cs201-lecture02R

1

2

3

13

file:///Users/philip/Library/CloudStorage/GoogleDrive-pcaplan@middlebury.edu/My%20Drive/teaching/cs201f24/website/lectures/lecture04/slido.com


A note about mutability and immutability.

Think about whether you can "mutate" the object.

mutable: object fields can be modified after creation.

immutable: objects fields cannot be modified after creation.

String s = "Hello";

s += " World"; // append

1

2

// essentially the same as

String sOld = "Hello";

String sNew = new String(sOld + " World");

1

2

3

Strings are actually immutable.

We end up creating a new String when appending.

14



Standard way to expose what can be set and not set, and

what can be retrieved: setter and getter methods.

Recall what we did in our Car class.

private void setGear(int gear) {

  this.gear = gear;

}

1

2

3

public void setLocked(boolean value) {

  locked = value;

}

1

2

3

public int getSpeed() {

  return speed;

}

1

2

3

15



Remember that static keyword means it doesn't require an

instance (object) - it's part of the class definition.

class Car {
  public static int numberOfWheels() {

    return 4; // we don't need to create a car to ask this question

  }
  ...

}
 

// somewhere else in the code

System.out.println("The car design has " + Car.numberOfWheels() + "wheels");

1
2

3

4
5

6
7

8

9

BUT! Really this should be a constant, defined using static final

class Car {

  public static final int NUMBER_OF_WHEELS = 4; // convention to use SNAKE_CASE for constant

  ...
}

 
// somewhere else in the code

System.out.println("The car design has " + Car.NUMBER_OF_WHEELS + "wheels");

1

2

3
4

5
6

7

Ask yourself: can I use the blueprint/design or do I need a built object?

16



Rest of class: do something similar for a Student.

Things to think about:

First, think about what a Student object should store: name? array of classes? age?

dorm? favorite cereal? study spots? mailbox?

What kinds of functions should a Student be able to do?

Which fields and methods should be public?

Which fields and methods should be private?

Which fields should be modifiable via a setter or retrievable from a getter?

Intentionally open-ended!

Brainstorming and designing is part of developing code!

17



See you tomorrow!

Homework 1 extended to tomorrow night (9/20) at 11:59pm.

I'm sorry about not having office hours this week, but I'll post them this

weekend.

Please visit Noah (go/noah) or Smith (go/smith) for office hours or see the

course assistants tonight from 4 - 8pm (schedule at go/cshelp).

Submit exit ticket 2R today.

For more information about access modifiers, see Oracle's documentation:

https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html

18

https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html

