Middlebury

CSCI 201: Data Structures
Fall 2024

Lecture 2R: Objects

Goals for today:

e Start styling our codes nicely.

e Create objects using the new keyword.

e Define constructors which are called when creating objects.

e Reference the current object using the this keyword.

e Decide whether member variables (fields) or methods should be declared
publicorprivate.

e Usethe . "dot" operator to access member variables (fields) or call methods.

e Write setter and getter methods.

e Make some member variables (fields) mutable or immutable.

e Reinforce the decision about whether to make a method static.

el L LT
= WMoy gm onf s

Let's set up a few style guidelines.

Opening { ends first line of block (i f, for, class, method).

Indent every line inside block.

Closing } should be on separate line, "undoing" indentation of block.
Use CamelCase for class names, drinkingCamelCase for variables/methods, lowercase for single words.
Use spaces between keywords and other control characters ((), { }) and operators (&&, <, etc.).

No space between semi-colon and previous character (i = 0;,noti = 0 ;).

Use a space after semi-colon and next statement (in definition of for-loop).
One line, one statement (unless comma-separated, e.g. int i = 0, j =

0).

1 int x =5, y = 20; 1 int x = 5, y = 20;

2 String my name = "Mike Wazowski"; int age = 20; 2 String myName = "Mike Wazowski";

3 for(int i = 0; i<values.length;i++){ 3 int age = 20;

4 if(condition) { 4 for (int i = 0; i < values.length; i++) {
5 5 if (condition) {

6 } 6

7 else 7 } else {

8 { 8

9 9 }

10 } 10 }

11}

Java is object-oriented.

e Alanguage is object-oriented if programs in that language are
organized by the specification and use of objects.

e An object consists of (1) some internal data items along with (2)
operations that can be performed on that data.

El NN HR
Y LLES | B |} == = i
BT o Pele nEN ® "o

| LB]| _ll' [} L L] N EE_EN L4)

LRERRERSRRES NE AECER CRa ENCAR-AE- ims HEE &2 om ===

Let's design and create a car!

B o e T e v Pl 1 2 Sl T
- « =S + nlan =

1 class Car { 1 Car car = new Car('"Subaru", 2019);
2
3}

In groups of 3: think about the following questions.

e What information about a car is publicly visible?

What information about a car can only be accessed if you're inside the car?

What is a function of a car that can be done from outside the car?

What is a function of a car that can only be done from inside the car?

What is something about a car that can change?

What is something about a car that cannot change?

Publicly visible information about a car. Information only accessible from inside a car.

Car function that can be done from outside. Car function that can only be done from inside.

Anatomy of a Java class definition.

1 // in a file called CarExample.java
2 class Car {

3

4 // member variables (fields)

5 String make;

6 int year;

7

8 // methods

9 Car(String make, int year) { // constructor
10 this.make = make;

11 this.year = year;

12 }

13

14 void drive() {

15 System.out.println("Starting the " + make + "...");
16 System.out.println("Vroom vroom.");

17 }

18 }

19

20 public class CarExample {
21 public static void main(String[] args) {

22 Car car = new Car("Subaru", 2019);
23 car.drive();
24}

25 }

Use access modifiers to control what is visible and
what is not.

e public:can be accessed by code outside of the class (also inside).
e private: canonly be accessed by code inside the class.

Why do we use these? readability, correctness.

Anatomy of a Java class with access modifiers.

1 // in a file called CarExample.java
2 class Car {

3

4 // member variables (fields)
5 public String make;

6 public int year;

7 private int gear;

8

9 // methods
10 Car(String make, int year) { // constructor

11 this.make = make;

12 this.year = year;

13}

14

15 public void drive() {

16 System.out.println("Starting the " + make + "...");
17 setGear(1l); // put the car in first gear
18 System.out.println("Vroom vroom.");

19 honk();

20 }

21

22 private void setGear(int gear) {

23 this.gear = gear;

24 }

25

26 private void honk() {

27 System.out.println("beep beep");

28 }

29 }

30

31 public class CarExample {

32 public static void main(String[] args) {
33 Car car = new Car("Honda", 2019);

34 car.drive();

35 }

36 }

What's with the this?

String make; // fields
int year;
int gear;

Car(String make, int year) { // constructor
this.make = make;
this.year = year;

}

OO0 U WN K-

\e]

10 private void setGear(int gear) {
11 this.gear = gear;
12}

Primary uses:

e Avoid ambiguity in fields and parameters (notice make, year and gear are
parameters and fields).

e Pass a reference to this object to some other function. For example, imagine we
keep a reference to an instance of a Garage class called garage. Perhaps we
need to callgarage.changeOil (this);

11

Arrays can be used to hold many Car objects.

Items are initially null: we need to use new to actually create Car objects.

1 int nCars = 5;

2 Car[] cars = new Car[nCars];

3 cars[0] = new Car("Subaru", 2019);

4 cars[l] = new Car("Honda", 2021);

5 cars[2] = new Car("Ford", 2024);

6 // cars[3] and cars[4] are still null

7 System.out.println("Car 3 make = " + cars[3].make); // Exception!!

Exception in thread "main" java.lang.NullPointerException: Cannot read field
"make" because "cars[3]" is null at CarExample.main(CarExample.java:7)

12

What will be the value of same?
Go to slido.com (event #2743882).

1 cars[0] = new Car("Honda", 2019);
2 cars[l] = new Car("Honda", 2019);
3 boolean same = (cars[0] == cars[1l]);

There are no active polls

at tha mnmant

13

file:///Users/philip/Library/CloudStorage/GoogleDrive-pcaplan@middlebury.edu/My%20Drive/teaching/cs201f24/website/lectures/lecture04/slido.com

A note about mutability and immutability.

Think about whether you can "mutate" the object.

e mutable: object fields can be modified after creation.
e immutable: objects fields cannot be modified after creation.

1 String s = "Hello";
2 s += " World"; // append

1 // essentially the same as
2 String sOld "Hello";
3 String sNew new String(sOld + " World");

Strings are actually immutable.
We end up creating a new String when appending.

14

Standard way to expose what can be set and not set, and
what can be retrieved: setter and getter methods.

Recall what we did in our Car class.

=

private void setGear(int gear) {
this.gear = gear;

N

3}

=

public void setLocked(boolean value) {
locked = value;

N

3}

[

public int getSpeed() {
return speed;

N

3}

15

Remember that static keyword means it doesn't require an
instance (object) - it's part of the class definition.

class Car {
public static int numberOfWheels() {
return 4; // we don't need to create a car to ask this question

}
}

// somewhere else in the code

1
2
3
4
5
6
7
8
9 System.out.println("The car design has " + Car.numberOfWheels() + "wheels");

BUT! Really this should be a constant, defined using static final

class Car {
public static final int NUMBER OF WHEELS = 4; // convention to use SNAKE CASE for constan

}

// somewhere else in the code
System.out.println("The car design has " + Car.NUMBER OF WHEELS + "wheels");

~N o0l W N

Ask yourself: can | use the blueprint/design or do | need a built object?

16

Rest of class: do something similar for a Student.

Things to think about:

First, think about what a Student object should store: name? array of classes? age?
dorm? favorite cereal? study spots? mailbox?

What kinds of functions should a Student be able to do?

Which fields and methods should be public?

Which fields and methods should be private?

Which fields should be modifiable via a setter or retrievable from a getter?

Intentionally open-ended!
Brainstorming and designing is part of developing code!

17

See you tomorrow!

e Homework 1 extended to tomorrow night (9/20) at 11:59pm.

e |'m sorry about not having office hours this week, but I'll post them this
weekend.

e Please visit Noah (go/noah) or Smith (go/smith) for office hours or see the
course assistants tonight from 4 - 8pm (schedule at go/cshelp).

e Submit exit ticket 2R today.

e For more information about access modifiers, see Oracle's documentation:
https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html

18

https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html

