Middlebury

CSCI 201;: Data Structures
Fall 2024

Lecture 11T: Graphs

Goals for today:

e Whatis a graph? What are edges? What are vertices/nodes? What is a path? What is a directed
edge? What is a cycle? What do weights represent? What is the degree of a node?

o Different types of graphs: directed, complete, connected.

e Represent a graph using an adjacency matrix.

e Represent a graph using adjacency lists.

e Represent graphsin Java.

o
" o
P -

o

I-

- -
8 .

"0
v B

Terminology: a graph consists of two sets: nodes (a.k.a. vertices) and edges.

Ataﬁe.z.(_'é') = Y
C e Aeaﬁez.(‘(:')

(G‘ o \A‘ 0\(;‘, l
oA\ ALY
S

)
—

b-d-e-% 54 Xi\b

Two vertices are adjacent if there is an edge between them. The edge is incident to both vertices.

The degree of a node is the number of edges incident to it.

A path is a sequence of nodes py, po, . .., Pr Where there is an edge (p;, p;+1) in the set of edges. No edge is
repeated. A simple path has no repeated vertices.

A cycle is a path where the first and last node are the same.

b-d-da -b 15 & %.,"\f’,

Edges can also have a direction.

b a 1san

céﬁ@
LA
oS 1S ol on
e

Is there a cycle in this graph?

Edges can also have weights.

What can weights be used for?

We might want to calculate the shortest path between two nodes.

A graph is connected if there is a path between every pair of nodes.

ws o
conneoRd "drﬂ’\\

e ?Ac\m Loom

- €

Strongly connected (for directed graphs): every pair of nodes is
reachable by a path.

Which edge can we add to make this graph strongly connected?

We have seen graphs before! A tree is a special type of graph.

A tree is a connected, undirected graph without any cycles.

T .
~— 0 \%tW

o
o °
)

@Q ®

Trees can be rooted or free.

Representing graphs: adjacency matrix and adjacency lists.

11

Representing directed graphs (also with edge weights).

12

Implementing this in Java using adjacency lists (or adjacency sets).

1 public class Graph<Node> { 1 public static void main(String[] args) {
2 2 Graph<Character> graph = new Graph<>();
3 // adjacency lists: node -> set of adjacent nodes X o

4 private HashMap<Node, HashSet<Node>> adj; : grmﬂhaddE@mﬂ.a.'.b.)f

! 5 graph.addEdge(‘'a’, 'd');

5 6 graph.addEdge('b', 'd');

6 public Graph() { 7 graph.addEdge('c', 'd');

7 adj = new HashMap<>(); 8 graph.addEdge('d’', 'e');

8 } 9 graph.addEdge('e', 'f');

9 12 graph.addEdge('e', 'g');

10 public void addEdge(Node a, Node b) { 12 System.out.println(graph.hasEdge('b', 'a'));
11 if (l!adj.containsKey(a)) { 13

12 adj.put(a, new HashSet<>()); 14 System.out.println(graph.getNodes());
13 } 15 }

14 if (l!adj.containsKey(b)) {

15 adj.put (b, new HashSet<>());

16 }

17 adj.get(a).add(b); Brainstorm: how can we design a
18 adj.get(b).add(a);
SO getEdges () method?
21 public boolean hasEdge(Node a, Node b) {
22 // or adj.get(b).contains(a) since undirected
23 return adj.get(a).contains(b);
24 }
25
26 Set<Node> getNodes () {
27 return adj.keySet();
28 }

29 }

Retrieving the set of edges.

Maybe use a helper Edge class?
class Edge {
public Node u; bc
<Node> { public Node v;
HashMap<Node, HashSet<Node>> adj; pu:;ig Edge(Node u, Node v) { w‘

.u u;
this.v :

HashSet<Edge> () { .

ey e seh(ode) ord boolt opualt
kv

OCoONOULLAE WN -

-

HashSet<Node> list = adj.get(u);
(Node v : 1list) {
10 edges.add(new Edge(u, v));

) class Edge {

1
2 public Node u;

} 3 public Node v;

edges; 4
} 5 public Edge(Node u, Node v) {

6 this.u u;
7 this.v V;
8

——

}

10 @Override

11 public int hashCode() {

12 return 31 * Math.min(u.hashCode(), v.hashCode())
13 + Math.max(u.hashCode(), v.hashCode());

(tjb 14 }
15
16 @Override
17 @SuppressWarnings("unchecked")

18 public boolean equals(Object otherObj) {

19 Edge otherEdge = (Edge) otherObj;
20 return (u.equals(otherEdge.u) && v.equals(otherEdge.v)) ||
21 (u.equals(otherEdge.v) && v.equals(otherEdge.u));
22}
23

(::) 24 public String toString() {
25 return "(" + u.toString() + ") — (" + v.toString() + ")";
26}

® >

Additional notes:

e Next class: graph searching algorithms.
e Complete Exit Ticket 11T by end of today.
e Rest of class (if time): work on Homework 9.

e Homework 9 currently due on Friday 11/22: implement a hash table with linear probing to
handle collisions. Extend? Please complete the poll on our Ed discussion board.

o
" O
P -

o

® o) 2
O _0
o &

-

O

15

