Middlebury

CSCI 201;: Data Structures
Fall 2024

Lecture 10T: Hash Tables (Part 1)



Goals for today:

Solve problems using Java's built-in HashSet and HashMap (which are built using a hash table).
Write our own hashCode and equals methods for our custom types in order to use them with Java's
built-in HashSet and HashMap.

Use a hash function to determine the index of a key in a hash table.

Practice with bitwise operators.

:
l




Consider this problem:

e Suppose we start at some pointin a grid and can move left, right, up or down (no diagonal movement).
e We can only step into a grid point that we have not yet visited and cannot step out of bounds of the grid.
e Open LocationTracker. java and brainstorm how you would design a solution for the

boolean haveBeenHere(Point point) method (withouta Set orMap).

.
eaew TPeruhian

.,A.*vg (‘MAQM *:Nghbn

+ o boweds ?
heer 30
G sk !4

-
@

‘i I.I



One possible solution:

but...

1 public class PointTracker { i i e e e e st e
2 boolean[][] visited; IIIIIIiiiiIIiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic:
3 e e e e e e e e
4 public PointTracker() { e e e e e e e e e e e e e e e e e
5 visited = new boolean[GRID SIZE][GRID SIZE]; e e e e e e e
6 for (int i = 0; i < GRID SIZE; i++) { e e e e e e e e e e e e e
7 for (int j = 0; Jj < GRID SIZE; j++) { e e e e e e e e e e e e e e e e e e
: visited(i](3] = false; B e ESEIEENT
9 } e e e e e e e e e e e e e e e e
10 } e e e e e e e e
11 location = new Point(0, 0); // or in middle e e e e e e e e e e e e e e
12 move (location); e e e e e e e e e e e e e e e e e
13 } e e e e e e e e e e e
14 IIIIiIIIiiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiics
15 public boolean haveBeenHere(Point point) ({ e e e e e e e e e e e e e e e e e e,
16 return visited[point.x][point.y]; e e e e e e e e e e e e e e
17 } e e e e e e e e e e e e e e e e e
18 e e e e e e e e
19 public void move(Point newLocation) { IIIIiIIiiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiics
20 visited[newLocation.x][newLocation.y] = true; e e e e e e e e e e e e e e
21 location = newLocation; e e e e e e e e e e
22 } e e e e e e e e e e e e e e e e e
23 3 il

Is there a way to use less memory?



We only want to keep track of points we've visited.
ArraylList of Points? ol P'm’(s pe vt

2 2 2 22 22 B P 2
1

) step o new \ocuh‘w\, add

‘ be ¢ BW{’
dd 4o AUt — OQ1) awe V124 3 ey olkay

coanwe
7 ' : y.
2) hove We beay hewe e F A o(s 90\;:':@3 achipee OQV) .
op Hanugh [vek O heck: as
¢ XA WIS SAVe

O n [V st

But we also want to be able to (quickly) look up if we've visited a point.

@ Idea: use an array, but find a way to map items to array indices.

= >



Introducing hash functions: map items (keys) to an array index.

Imagine our keys are integers (we'll come back to custom types like Point later).

Example: storing student ID to name.

e Green onion: 00837194 2-
e Fire lizard: 00833462 b

e Blue turtle: 00749132 ¥

e Electric mouse: 00678395 &
e Clam: 00889321 |

e Fox:00765432 o

e Sleepy panda: 00812493 s

m o‘% ‘f

e Radish: 00754639 9 Funivh
one. wifion’ T hag g Cromn TP
grom O 7 wax 1P L e

We kS bt vsS

o \ek off wemo

om0 [TTTTTTT]

- Wb € Pt B0 s 428
plepose /o ¥ e oisonns b Bt ) ewadinde fancieh )l

@ M(‘w’ oW axv 4l \!AA{



'S0

Hash functions: map the universe of keys to a restricted range
(e.g. the size of an array m).

What makes a good hash function?

e Deterministic: h(k) should always return the same value.
e Fast to evaluate: if it's expensive (e.g. log n) then we don't gain anything by using a table.

The challenge is that we generally don't know the distribution of the keys. wﬂ“\"a

Example: division method (h(k) = k mod m). ,// £ A

m k  h(k) y < W pesite ko

1 25 3 s

1 1 |

11 17 b gomM¢ e \hosh Londiven

13 133 2 it "X to

s 7 5 sawe: 45

13 25 1z WM

Good rule of thumb (for division method) is that m is a
prime number not too close to a power of 2.

o st are ot [TIPTTTITITT
Ul hdding t(s )



Concern: what if multiple keys map to the same array index?

COLLISION
m k h(k)
11 25 3
11 1 |

——)
11 17 & v f oY
11 34 |\ = )

HEOECGEECEEEE
Luwtf)f




Implementing a hash table for custom types.

e Overridepublic int hashCode().

e Toadd(K key) orput (K key, V value):
1. Evaluate key.hashCode () to get an integer. m
2. Use the result to determine the array index.
3. Place item in bucket at array index.

e Toget(K key):

1. Evaluate key.hashCode () to get an integer.
2. Use the result to determine the array index.

. . . . 1 class Point {
3. Retrieve item in bucket at array index. 2 public int x;
e Butaswe said, there may be collisions (or multiple keys thatmap | 2ric ooy o
to the same bucket). We need to iterate through items in the DI
bucket to find the item that is associated with the key: Lo
= So we need to find the item with a key (i.e. check key equivalence). 9  @override
= Requires overriding public boolean equals(Object otherObj). 12 puk}iﬁoggthg‘vsﬁﬁﬁi;’wi hash two integer values?
* Load factor: a = n/m. 2 )
= n:numberofitems (size). 14  @override
= m:number of buckets (length of table array, i.e. capacity). > pu?iiitbgziiﬁoigtisEggiig Siiiigiiii? {
= Higher a: potentially go through many items in one bucket to search. 17 return (otherPoint.x == x) && (otherPoint.y == y);
= Low a means wasted memory. 12 ) '

e Resize the table if load factor is outside acceptable range.
= And be sure to rehash items (recompute table indices).



A detailed look into how Java does this (OpenJDK).

https://github.com/openjdk/jdk/blob/7b0f273e37625461baa333a3ef20fbbd93647243/src/java.base/share/classes/java/util/HashMap.java#L320

285 g e 2t

¢4er ¢ 7
o\V\16\,2\0
= |00

1 /%% z )

2 % Computes key.hashCode() and spreads (XORs) higher bits of hash \ O l l 0

3 * to lower. Because the table uses power-of-two masking, sets of o ‘ o

4 * hashes that vary only in bits above the current mask will - 8‘
5 % always collide. (Among known examples are sets of Float keys * l‘ 4 ‘t-’ 2. =
6 * holding consecutive whole numbers in small tables.) So we L'{

7 * apply a transform that spreads the impact of higher bits

8 * downward. There is a tradeoff between speed, utility, and

9 * quality of bit-spreading. Because many common sets of hashes

10 * are already reasonably distributed (so don't benefit from &

11 * spreading), and because we use trees to handle large sets of xo

12 * collisions in bins, we just XOR some shifted bits in the

13  * cheapest possible way to reduce systematic lossage, as well as o \

14  *x to incorporate impact of the highest bits that would otherwise o ‘ ‘

15 * never be used in index calculations because of table bounds.

16 *x/ o \

17 static final int hash(Object key) { \ \ o

18 int h;

19 return (key == null) ? @ : (h = key.hashCode()) ~ (h >>> 16);

20 } ‘—’i’b ‘ o O

Table (array) size is always a power of 2.
Table index computed from hash(key) & (m - 1) where m is the capacity (table length).
" means bitwise XOR (exclusive OR): e.g. 91101 ~ 11001is

-4
>>> means unsigned right shift (here, by 16 bits): e.g. 01101010, >>> 4is oo O\\O
& means bitwise AND: e.g. 00110 & 111is

In your Terminal, type jshelland use Integer.toBinaryString to try these out! Ctr1-D to exit.

2t =

b
ot [
\6




Exercise: compute the hash table indices for the
following Points (using Java's technique).

static final int hash(Object key) {
int h;
return (key == null) ?
0 : (h = key.hashCode()) © (h >>> 16);
}
Starting with a table sizem = 16.

Tableindex=hash(key) & (m - 1).
Point 1: (1, 1)
Point 2: (12345, 678)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19 }

class Point {

public int x;

public int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

@Override
public int hashCode() {

return 31 * x + y;

}
@Override
public boolean equals(Object otherObject) {
Point otherPoint = (Point) otherObject;
return (otherPoint.x == x) && (otherPoint.y == y);
}

12



Additional notes:

For more hash functions, see: https://en.wikipedia.org/wiki/List_of_hash_functions
Lab 7 due tonight.

Homework 8 due on Friday 11/15: use a TreeMap to solve a problem and then implement a
DIY-version based on what your algorithm needs.
Next class: how can we handle collisions?

13


https://en.wikipedia.org/wiki/List_of_hash_functions

