Middlebury

CSCI 201: Data Structures Fall 2024

Lecture 9R: Balanced Trees

Goals for today:

- Revisit **remove** method, and how to implement?
- Analyze the complexity of contains, add, remove in a BST.
- Motivation for balancing: what happens if we insert keys in a BST in a certain way?
- Calculate and save the height of a node when it's added.
- Calculate the *balance factor* of a node.
- Perform **rotations** on a tree to improve the balance factor.
- Implement a Adelson-Velsky-Landis (AVL) self-balancing binary search tree.

Removing an item/key from a BST:

- Start at node = root.
- If key < node.key, need to remove node in left subtree (node.left).
- If key > node.key, need to remove node in right subtree (node.right).
- If key == node.key, three cases to consider:
 - 1. Is this a leaf? Delete node.
 - 2. (a) If node.left == null, "graft" node.right to the node.
 - (b) If node.right == null, "graft" node.left to the node.
 - 3. Two (non-null) child nodes?
 - Find node (minNode) with minimum key in node. right (right subtree).
 - Replace node. key with minNode. key.
 - Now we remove minNode from right subtree.

3

Implementing the **remove** method.

```
1 public void remove(E key) {
 2
    root = remove(root, key);
3 }
 4
  private Node remove(Node node, E key) {
 6
                                                                                      14
                                                                   8
 7
    if (node == null) {
 8
      return null; // went beyond a leaf, key not found
 9
     }
10
    int compareResult = key.compareTo(node.key);
11
                                                              5
                                                                       9
12
    if (compareResult < 0) {</pre>
      // node to remove is (possibly) in the left subtree
13
14
      node.left = remove(node.left, key);
    } else if (compareResult > 0) {
15
      // node to remove is (possibly) in the right subtree
16
      node.right = remove(node.right, key);
17
18
    } else {
      // we are at the node to delete, check 3 cases
19
20
      if (node.left == null && node.right == null) {
        return null; // case 1, delete a leaf
21
22
      } else if (node.left == null) {
                                      right subtree
23
        return node.right; // case 2a
24
      } else if (node.right == null) {
                                                            Section
25
  return node.left; // case 2b
26
27
28
29
30
31
32
33 }
```


Last time we talked about **contains**, **add**, **remove**. What is the runtime complexity?

Which of the following **contains** methods will *work* for these types of trees.

Method 1:

Method 2:

```
1 public boolean contains(E key) {
     return contains(root, key);
 2
 3 }
 4
   private boolean contains(Node node, E key) {
 5
     if (node == null) return false;
 6
 7
     int compareResult = key.compareTo(node.key);
 8
 9
     if (compareResult == 0) {
10
       return true;
    } else if (compareResult < 0) {</pre>
11
       return contains(node.left, key);
12
13
     } else {
       return contains(node.right, key);
14
15
     }
16 }
```

```
1 public boolean contains(E key) {
     return contains(root, key);
 2
 3 }
 4
 5
   private boolean contains(Node node, E key) {
     if (node == null) return false;
 6
 7
 8
     if (key.equals(node.key)) return true;
 9
     return contains(node.left, key) ||
10
            contains(node.right, key);
11
12 }
```

- General binary tree: no specific properties. M2-
- Heap (min or max): complete, every node value > child node values (for max-heap).
- Binary search tree: left subtree keys < right subtree keys of every node. MINZ.

Motivation for balancing: what happens if we do this?

7

Ideally, we'd like to maintain a *balanced* tree to reduce the tree height.

- Recall the **height** of a node (and tree): length of *longest* path from node to a leaf.
- Balanced means the height of the left and right subtrees differ by at most one.
- Balance factor (bf) of a node: height(node.left) height(node.right).
- height of a null node is -1.
- **bf** < **0**: right-heavy, **bf** > **0**: left-heavy.

Back to our add method: let's keep track of height after updating a node (as we recurse back up the tree).

- Start at node = root.
- If key < node. key, need to put in left subtree.
- If key > node. key, need to put in right subtree.
- If key == node. key, key is already in tree! Done.
- If node == null, create a new Node for this key..
- Update the height of the node after insertion in left/ right subtrees.


```
1 class Node {
 2
     public E key;
 3
     public Node left;
     public Node right;
 4
 5
     public int height:
 6
 7
     public Node(E kev) {
8
       this.key = key;
9
10
11
     public void calculateHeight() {
12
       // TODO
13
     }
14 }
15
16 private Node add(Node node, E key) {
     if (node == null) {
17
18
       return new Node(key);
19
     }
20
21
     int compareResult = key.compareTo(node.key);
22
     if (compareResult < 0) {</pre>
23
       node.left = add(node.left, key);
24
     } else if (compareResult > 0) {
25
       node.right = add(node.right, key);
26
     }
27
     // update the height of this node
28
29
     node.calculateHeight();
30
31
     return node;
32 }
```


Updating the height as we recurse back up the tree.

```
1 class Node {
     public E key;
 2
 3
     public Node left;
     public Node right;
 4
     public int height;
 5
 6
 7
     public Node(E key) {
 8
      this.key = key;
 9
     }
10
11
     public void calculateHeight() {
12
       // TODO
     }
13
14 }
15
16 private Node add(Node node, E key) {
     if (node == null) {
17
18
       return new Node(key);
19
    }
20
21
     int compareResult = key.compareTo(node.key);
22
     if (compareResult < 0) {</pre>
       node.left = add(node.left, key);
23
24
    } else if (compareResult > 0) {
       node.right = add(node.right, key);
25
26
     }
27
     // update the height of this node
28
29
     node.calculateHeight();
30
31
     return node;
32 }
```

```
1 public void calculateHeight() {
   if (left == null && right == null) {
2
3
      height = 0;
4
   } else {
      int hL = (left == null) ? 0 : node.left.calculateHeight();
5
     int hR = (right == null) 0 ? : node.right.calculateHeight();
6
7
     height = 1 + Math.max(hL, hR);
8
   }
9 }
1 public void calculateHeight() {
    if (left == null && right == null) {
2
3
       height = 0;
    } else {
4
      int hL = (left == null) ? 0 : left.height;
5
6
      int hR = (right == null) ? 0 : right.height;
7
       height = 1 + Math.max(hL, hR);
8
    }
9 }
1 public void calculateHeight() {
2
    int hL = (left == null) ? -1 : left.height;
    int hR = (right == null) ? -1 : right.height;
3
    height = 1 + Math.max(hL, hR);
4
5 }
```


Exercise: write a method called **getBalanceFactor** for the **Node** class.

bf = height of left - height of right.

And then print the balance factor information to each node when printing out the tree.

So what can we do with this balance factor? (which can be computed from the updated **height** during every **add** or **remove**).

ROTATIONS

12

To **balance**, there are 4 possible cases:

13

Maintaining an Adelson-Velsky-Landis (AVL) self-balancing binary search tree.

- 1. Perform add/remove as in usual BST operations.
- 2. Update node heights and calculate **node** balancing factor **bf(node)**.
- 3.balance(node):
 - 16 • if bf(node) < -1: (tree is right-heavy) if bf(node.right) > 0(right tree is left-heavy): rotate right-left, i.e. rotateRight(node.right) then rotateLeft(node). else (right tree is right heavy): rotate left, i.e. rotateLeft(node). 16 /a\ b b 36 3a .if bf(node) > 1: (tree is left-heavy) if bf(node.left) < 0 (left tree is right-heavy): rotate left-right, i.e. rotateLeft(node.left) then rotateRight(node).</pre> • else (left tree is left-heavy): rotate right, i.e. rotateRight(node). 36 dc10

 $bf(7) = h_s - h_{null}$ rotate right

remove (7) bf(5)=h2-hg ~ =1-1=0

15

Additional notes:

- **Homework 7** due on Friday 11/8: implement a max-heap.
- There is also an optional Homework 7 challenge problem about Huffman compression.
- **TreeSet** and **TreeMap** use another type of balanced BST called a **Red-Black Tree**: extra bit (red or black) stored at every node, still uses rotations to balance (less than AVL to add but AVL tree will be more height-balanced so contains will be faster).
- Submit ET 9R by the end of today.

source: Wikipedia (https://en.wikipedia.org/wiki/Red%E2%80%93black_tree)

