Middlebury

CSCI 201;: Data Structures
Fall 2024

Lecture 8R: Heaps, priority queues

Goals for today:

e Motivation: queues where items are removed according to a priority (priority queues).
e How would we design a priority queue using the structures we've learned so far?

e Use a complete binary tree to implement a heap (min & max).

e Represent a complete binary tree using an array.

A priority queue is an abstract data type which can be implemented
with different data structures. But what should we use?

Main things we want:

e Ability to add a new item into a priority queue.
e Ability to query (peek) or remove (pol1) next item with highest priority.

e How does this work?

L import java.util.PriorityQueue; e Forregular queues, we used either
2
3 public class PriorityQueueExample { ArrayList orLinkedList.
4 public static void main(String[] args) { e Let's try using these for priority
5 PriorityQueue<Integer> queue = new PriorityQueue<>();
6 queues too.
7 queue.add(10); e But how do we find the highest
8 queue.add(1); priority item?
9 queue.add(5);
10 queue.add(3);
H | | @ Idea 1: look forit!
12 while (queue.size() > 0) { g
13 // remove the next item and print it out
14 System.out.println(queue.poll()); .
15 } @ Idea 2: keep the items sorted!
16 }

17 }

Exploring these ideas with an ArrayList or LinkedList.
(wpt)

@ Idea 1: (unsorted) add to beginning or end, look for highest priority item.
e ArraylList: ED]]]:D] add to end ol\) S‘“A* ol l\?ﬂ Ot“)

with dail

e LinkedList A K A X AKX KK Add te and’ 00l) SeaM

@ Idea 2: (sorted) add in appropriate place, remove highest priority item from beginning or end.

aeroniss [TTTTTTT] add ¢ 00 comee Caonandt 009

wivw el ot :
e LinkedList: X A X KX & ‘X'K'K* addl O0n) romme frum b%mmﬁalugz\l)

for hpivt Oln)

Is there a way to have something in between O(1) and O(n) for both add and po11?

Yes. We can use a heap (like what Java uses).

Class PriorityQueue<E>

java.lang.Object
java.util.AbstractCollection<E>
java.util.AbstractQueue<E>
java.util.PriorityQueue<E>

Type Parameters:

E - the type of elements held in this collection

All Implemented Interfaces:

Serializable, Iterable<E>, Collection<E>, Queue<E>

public class PriorityQueue<E>
extends AbstractQueue<E>
implements Serializable

An unbounded priority queue based on a priorityThe elements of the priority queue are ordered according to their natural
ordering, or by a Comparator provided at queue construction time, depending on which constructor is used. A priority queue does not
permit null elements. A priority queue relying on natural ordering also does not permit insertion of non-comparable objects (doing so
may result in ClassCastException).

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html

Implementation note: this implementation providesime for the enqueuing and dequeuing methods (offer, poll, remove()
and add); linear time for the remove(Object) and contains(0Object) methods; and constant time for the retrieval methods (peek,
element, and size).

bt add t polt are O(Lgn) howd

A heap is a binary tree with two extra properties.

1. Itis complete. = al\ lore\s filled except (,{»5530}}3 (ast | enreh NNAL& i(\\;e:é 5;’9”
2. It satisfies a heap property: \y

e For a max-heap: Every node value is greater than (or equal to) the values of its child nodes. So the root is the largest!
e For a min-heap: Every node value is less than (or equal to) the values of its child nodes. So the root is the smallest!
e We need to maintain this property when adding to (add) or removing from (po L'1) the heap.

e &X&Mf‘” ot o
T wex-hed &
& is lof
R iieJo O, e
cwild, Vet \3N¢r_r+\,.4,\

() © OO LR hild valmes

OO (2 Br win-eep hades e S Gl VelES

—
Siled (eBt right >
on last loed. 6

Adding (add) a value to the heap:

1. Make a new leaf node (maintaining a complete binary tree) to hold this value.
2. Set the current node to this new leaf node.

3.while heap property not satisfied:

e Swap the values of the current node with the parent node. M (\ 5‘)
e Set the current node to the parent node. a

mex-woX °

OO OO

Adding (add) a value to the heap:

1. Make a new leaf node (maintaining a complete binary tree) to hold this value.
2. Set the current node to this new leaf node.

3.while heap property not satisfied:

e Swap the values of the current node with the parent node. M (\ 5‘)
e Set the current node to the parent node. o

mex-Wwox °

D © 0@

Adding (add) a value to the heap:

1. Make a new leaf node (maintaining a complete binary tree) to hold this value.
2. Set the current node to this new leaf node.
3.while heap property not satisfied:

e Swap the values of the current node with the parent node.
e Set the current node to the parent node.

\"” o

A
Q () OO

A

Adding (add) a value to the heap:

1. Make a new leaf node (maintaining a complete binary tree) to hold this value.
2. Set the current node to this new leaf node.
3.while heap property not satisfied:

e Swap the values of the current node with the parent node.
e Set the current node to the parent node.
(5

Aost =
0 0

Exercise: add the value 18 to the heap, i.e. add (18).

© \/

;

&0 00 O_,.

compervyy & oddt O (neit™
, 0 (4™

Exercise: add the value 18 to the heap, i.e. add (18).

/
0 O € ©
OJRO OO © O

How are we going to implement this?

e We need to be able to go "up": can keep track of parent of each node.
e We also need to be able to "find" the last leaf node:

Alternatively, complete binary trees can be
represented nicely with an array.

Main idea: index nodes top-to-bottom and left-to-
class CompleteBinaryTre<E extends Comparable<E>> {

1
r|ght within each level. 3 \a\ g private ArrayList<E> data;
! 4 public CompleteBinaryTree() {
A 5 data = new ArrayList<>();
- 4 6 }
’ 2 :
9
0

public CompleteBinaryTree(E[] items) {
data = new ArraylList<>();
for (E value : items) {
data.add(value);
}

.e qg publlc static int left(int i) {
1

return 2 x + 1;

}

public static int right(int i) {
return 2 x (i + 1);

}

public static int parent(int i) {
return (i - 1) / 2;

1

Printing the tree using pre-order traversal with our

CompleteBinaryTree representation

1
2
8
4
5
6
7
8

9
10
11 }

if (index >= data.size()) return "";

‘/_,MX. \»\spn)’

public String toStringHelper(String padding, int index) {

String result = padding + "L—(" + data.get(index).toString() + ")\n";

padding += "|

result += toStrlngHelper(paddlng, left(index));

result += toStringHelper(padding, rlght(lndex))
t

return result; PR (2 ;V\A‘ [/ AN \‘ﬂ-h

ddfe Afroylist.

5 &) ‘e ot

10

What about removing the top (i.e. highest priority) item from
the heap? Implementing the po Ll method.

1. Save the root node value (so we can return it later).

2. Set the root node value to the value of last node (a leaf).
3. Remove this leaf node.

4. Set the current node as the root node.

5.while heap property not satisfied:

e a. Find index of which child (left or right) is largest (for max heap), or smallest (for min heap). \>
e b. Swap current node value with value of index found in previous step (a). i (6\‘&
e c. Set current node as the child index found in step (a).)(\4\9

soé’f/

11

What about removing the top (i.e. highest priority) item from
the heap? Implementing the po Ll method.

1. Save the root node value (so we can return it later).

2. Set the root node value to the value of last node (a leaf).
3. Remove this leaf node.

4. Set the current node as the root node.

5.while heap property not satisfied:

e a. Find index of which child (left or right) is largest (for max heap), or smallest (for min heap). \>
e b. Swap current node value with value of index found in previous step (a). o (6%
e c. Set current node as the child index found in step (a).)(\‘\9

saé’f/

A
6\"(T

11

What about removing the top (i.e. highest priority) item from
the heap? Implementing the po Ll method.

1. Save the root node value (so we can return it later).

2. Set the root node value to the value of last node (a leaf).
3. Remove this leaf node.

4. Set the current node as the root node.

5.while heap property not satisfied:

e a. Find index of which child (left or right) is largest (for max heap), or smallest (for min heap).
e b. Swap current node value with value of index found in previous step (a).
e c. Set current node as the child index found in step (a).

11

What about removing the top (i.e. highest priority) item from
the heap? Implementing the po Ll method.

1. Save the root node value (so we can return it later).

2. Set the root node value to the value of last node (a leaf).
3. Remove this leaf node.

4. Set the current node as the root node.

5.while heap property not satisfied:

e a. Find index of which child (left or right) is largest (for max heap), or smallest (for min heap).
e b. Swap current node value with value of index found in previous step (a).
e c. Set current node as the child index found in step (a).

11

What about removing the top (i.e. highest priority) item from
the heap? Implementing the po Ll method.

1. Save the root node value (so we can return it later).

2. Set the root node value to the value of last node (a leaf).
3. Remove this leaf node.

4. Set the current node as the root node.

5.while heap property not satisfied:
e a. Find index of which child (left or right) is largest (for max heap), or smallest (for min heap).
e b. Swap current node value with value of index found in previous step (a).
e c. Set current node as the child index found in step (a).

11

Exercise: complete the 1sMaxHeap method for the
CompleteBinaryTree class.

Assume we are checking the max-heap property (node values > child values).
e Loop through all nodes (entire size() ofdataArrayList).
e Retrieve indices of left and right children and check heap property.

1
2
3
4
<
6
7
8

9
10
£ 5 |
12
13
14
13
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 }

public boolean isMaxHeap() {
for (int i = @; i < data.size(); i++) {

int 1 = left(i);
int r = right(1);
E value = data.get(i);

if (1 < data.size()) {
E lWalue = data.get(1l);
if (value.compareTo(lValue) < 0) {
// left child value is smaller than value
return false;
}
}
if (r < data.size()) {
E rvalue = data.get(r);
if (value.compareTo(rValue) < 0) {
// right child value is smaller than value
return false;
}
}

i (1 5 4
int p = parent(i);
E pValue = data.get(p);
if (pValue.compareTo(value) < 0) {
// parent value is smaller than value
return false;
}
}

return true;

Notes:

e Homework 6 due tomorrow: implement a calculator (using a stack) & mid-semester check-in.
e Lab 6 tomorrow: use a priority queue to encode messages efficiently!
o If you want to make your own trees, have a look at this app: https://tree-visualizer.netlify.app/

(trees for today's class were made with it).
e Reminder that Noah (go/noah) and Smith (go/smith) have office hours throughout the week
and the 201 Course Assistants have drop-in hours in the late afternoons/evenings (go/cshelp).

e Complete ET 8R by the end of today.

13

https://tree-visualizer.netlify.app/
https://noahrizika.github.io/office-hours.html
https://smithgakuya.com/
https://www.cs.middlebury.edu/~mlinderman/courses/cshelp/fall24.html#csci201

