Middlebury

CSCI 201: Data Structures
Fall 2024

Lecture 4T: Complexity



Remember our decision to double the capacityof aDIYList
when we ran out of space during a call to add?
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Goals for today:

e Analyze the runtime cost of our add method fora DIYList as we call it many times.
e Characterize how functions grow as the inputs get really big.
e Use big-oh notation to describe the running time of algorithms.
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Why? Why? Why?

Analyzing our codes will help us put the SCIENCE in computer science.
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We also want our analysis to be computer-independent.

Two types of resources to consider:

e Processor cycles: number of operations per second a machine can perform.
e Memory: space for storing data while program is running (RAM, cache). 1L 6B



The Collections framework describes the efficiency an
implemented method should provide.

Collection<E>

The size, 1sEmpty, get, set, 1iterator, and listlIterator operations

run in constant time. The add operation runs in amortized constant
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other operations run 1n linear time (roughly speaking).




What kinds of things in our programs might affect the runtime?
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Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.
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// If not, make more space and copy the old items.
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Two types of series we'll encounter:

1. Geometric: | + ¢+ (_z ¥ (3 IR « (m

2. Arithmetic: | + 2 + 3 +4+ -0 ¥4
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So the total number of = when calling add n times is:
20 -3

public class DIYList {
int size; // current number of items actually stored

M\‘ab“ String[] items; // capacity is items.length
cm'“?

public void add(String item) {
// Is there enough space (capacity, i.e. items.length)?
// IT not, make more space and copy the old items.

// Place item in items|[size] and increment size.
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Averaged over 1 calls to add (with n getting really big):
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We need a better way to analyze running time of algorithms.

big-oh notation: Given functions f, g, we say that f(x)is O(g(x)) if-
and-only-if there exist constants ¢ > 0 and k such that

f(z)] S@ lg(x)|, forall z >k
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Example: Show that 22 + 2z + 1is O(z?).
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Common functions used in big-oh estimates.
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(Discrete Mathematics and Its Applications 7th Ed., Rosen)
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We usually want to express our algorithm runtime using the
tightest bound.

We'll often use T'(n) to represent algorithm runtime in terms of input size n.
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A few rules for inferring big-oh bounds on algorithm runtime.

consecutive statements: T'(n) = T'(s1) + T'(s2)

statementl; // performing T(sl) amount of work
statement2; // performing T(s2) amount of work

for loop: T'(n) =n x T'(b). nested for loop: T'(n,m) = n x m x T(b).
for (int 1 = 0; 1 < n; 1i++) { for (int 1 = 0; 1 < n; i++) {
// some block performing T(b) amount of work for (int jJ = 0; J < m; Jj++) {
} // some block performing T(b) amount of work
}
}

if statements: T'(n) = T'(c) + max(T'(b;), T (be))

if (condition) { // condition performs T(c) amount of work

bodyl; // performing T(bi) amount of work
} else {
body2; // performing T(be) amount of work

}
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Exercises: determine 7'(n) (an expression for the number of operations
performed by the following algorithms), then provide a big-oh bound on T'(n).
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See you on Thursday!

e We'll use what we covered today to analyze some sorting algorithms.
o Get started on Homework 3! Implement yourown DIYArrayListString.
e Reminder that Noah (go/noah) and Smith (go/smith) have office hours throughout the week

and the 201 Course Assistants have drop-in hours in the late afternoons/evenings (go/cshelp).
o Submit exit ticket 4T today.
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https://noahrizika.github.io/office-hours.html
https://smithgakuya.com/
https://www.cs.middlebury.edu/~mlinderman/courses/cshelp/fall24.html#csci201

