Middlebury

CSCI 201: Data Structures
Fall 2024

Lecture 4T: Complexity

Remember our decision to double the capacityof aDIYList
when we ran out of space during a call to add?

g v’CW n ad
sXodk . “f“‘hd 7. sm,l n “’W

AL s\t = \ MM
se =0 14 sAd o —9 @
s o Moy,

’ & J,u)o\c M“a)

e

./

Goals for today:

e Analyze the runtime cost of our add method fora DIYList as we call it many times.
e Characterize how functions grow as the inputs get really big.
e Use big-oh notation to describe the running time of algorithms.

= H vy © 'lkw N ad
imgr, SRV, T Vel
sae ‘30 ‘Ao\ sael add - (o° —9 @
— add V%
‘ * J,m)ok. m:vs‘"‘\A

Why? Why? Why?

Analyzing our codes will help us put the SCIENCE in computer science.

Mé6re 1n CS 200
(matl, found #h ons)

We also want our analysis to be computer-independent.

Two types of resources to consider:

e Processor cycles: number of operations per second a machine can perform.
e Memory: space for storing data while program is running (RAM, cache). 1L 6B

The Collections framework describes the efficiency an
implemented method should provide.

Collection<E>

The size, 1sEmpty, get, set, 1iterator, and listlIterator operations

run in constant time. The add operation runs in amortized constant

. w . “ B .—’M
time, that 1s, adding n elements requires O(n) time. All of the

“M

. e —————— A S G .
other operations run 1n linear time (roughly speaking).

What kinds of things in our programs might affect the runtime?

fof i \00?5

¥ - sraxemontsS

Compasbons: & 22,5, 3=, ==,)=
Compartons:

Lo al: S,)\

a SS\G nmw"(%? =
N

)

Analyzing how many = we're doing in the add method when doubling
the capacity (as needed). Assume we start with a capacity of 1.

. — ...\
public class DIYList { f‘“?,a; po. e 2 g i - Z = ‘\
int size; // current number of items actually stored e - -‘4 \ ,‘.‘,*1 “‘O* ‘IDD—’ m
String[] items; // capacity is items.length \ e |

;..\a\c ‘)nw?o)‘\
wM‘Y m\ﬂ)‘ w\s Cubllc void add(String item) { 2;.‘::'-’1 m (£9%) }_

(\w\ // Is there enough space (capacity, i.e. items.length)?
W a:%
‘\a’ (""‘/} // Place item in items[size] and increment size. & (m) n n) ZN\+ \
??"“5[53%0 ” Rem wm <2 rAA\onst bwezh F (V€5 and

// If not, make more space and copy the old items.

6) caled n FvmeS] ‘5 2 3 ¢ Ges\eS
‘fz:::) *r \ l ‘*-:2- + 7L ‘t"ZL, ‘¥’ e .*r :ZN’ j:l 4?5f3¢>¥!\4ik3r\
\ = - ot m+| V)
\ "\ 2\ 22 —)=212-|

\ | 2= = 2(n-1) ~\
“ \\ ¥ = for wpy =20 -3
‘ \

'- |] . Yl = - D
15 1 7 246\06 1 3 ¥ 94V W 1w is kb g (h), . Yoval= 3N
TIIU 8 \b 32

Two types of series we'll encounter:

1. Geometric: | + ¢+ (_z ¥ (3 IR « (m

2. Arithmetic: | + 2 + 3 +4+ -0 ¥4

deved W CS 2R

{

So the total number of = when calling add n times is:
20 -3

public class DIYList {
int size; // current number of items actually stored

M\‘ab“ String[] items; // capacity is items.length
cm'“?

public void add(String item) {
// Is there enough space (capacity, i.e. items.length)?
// IT not, make more space and copy the old items.

// Place item in items|[size] and increment size.

T — E;\SEGZﬂﬂrib
P

Averaged over 1 calls to add (with n getting really big):

05 = o3 aswn-ed 00:8'5
N b 3

4\

7:.\'7' §7

Jf'\f\ ¢:\)£Ll- ‘K)O\
N CANS

10

We need a better way to analyze running time of algorithms.

big-oh notation: Given functions f, g, we say that f(x)is O(g(x)) if-
and-only-if there exist constants ¢ > 0 and k such that

f(z)] S@ lg(x)|, forall z >k

<3 wotAs. A ‘
c00) o £() is eventually,

\ o than,
A o o

Some Con<Yonrt
w\w*\\ﬂe o 9 (&) Y

/

- > e o o

- PO g W

11

Example: Show that 22 + 2z + 1is O(z?).

5\&0\;&)(1,\, LY \ 5 C Xz (A'(b??'\ﬂé CL\D‘B

’__._.-——'—'"

UM as: (c-)X-2X =\ Z O

?\CX C Qa2

G ()1 ey x=\ 0 @W-20) T\ =-2 2ol e
~\n6 K52 (731-2(2'“\5* ;o?v_}f

§
Ry x=30 (B - 2@\ 2z0l Y=

oe

‘eéwfé\ (1 K

<

>

12

Common functions used in big-oh estimates.

oo al

4096 |-
2048 |
1024 + ‘\d&.—‘
312 - Q/WOY\‘QX)*
256 |
12 : n? q/u.a)o‘(wﬁc, (_ ?o\\awb"m“ﬂ)
32)) .
16 | Ll L ﬁmwn’v\«m\(,
8 - A I \ih'e/&f“
; T e Lpgacithmie
| L — con S‘\'ay)‘\'

2 3 4 5 6 7 8

(Discrete Mathematics and Its Applications 7th Ed., Rosen)

13

We usually want to express our algorithm runtime using the
tightest bound.

We'll often use T'(n) to represent algorithm runtime in terms of input size n.

-
Strategy: -~ o(n) . no

. . . e. | + \oOwn
1. Pick out fastest growing term in T'(n). % : 3 X \,\\-LS)V
2. Drop coefficients. OO\') ? “\LS b\j e *\é A.
N e QT N5 and
Exercises: determine a big-oh bound for the following functions. \o w&}(\,

=14 on: O (X‘)
=1+ 5n*: O (‘ﬂ7'>
3.7(n) =5+20n+3n% O (,ﬂ2>

)
)
)

4.T(n) = "~ _nf_iﬁ O(“D
)
)

= 9 O(\) °

6.T(n) =n(5+logn): S fﬂjﬂ%ﬁ o(hﬂ;oéh)

14

A few rules for inferring big-oh bounds on algorithm runtime.

consecutive statements: T'(n) = T'(s1) + T'(s2)

statementl; // performing T(sl) amount of work
statement2; // performing T(s2) amount of work

for loop: T'(n) =n x T'(b). nested for loop: T'(n,m) = n x m x T(b).
for (int 1 = 0; 1 < n; 1i++) { for (int 1 = 0; 1 < n; i++) {
// some block performing T(b) amount of work for (int jJ = 0; J < m; Jj++) {
} // some block performing T(b) amount of work
}
}

if statements: T'(n) = T'(c) + max(T'(b;), T (be))

if (condition) { // condition performs T(c) amount of work

bodyl; // performing T(bi) amount of work
} else {
body2; // performing T(be) amount of work

}

15

Exercises: determine 7'(n) (an expression for the number of operations
performed by the following algorithms), then provide a big-oh bound on T'(n).

Qoo\ks o'\
: Example 1: Example 2: Example 3:
(,DWV\T\V\% /’ﬂ ﬁ nt 2
*"‘C int sum = 0; B int sum = 0; int sum = 0; «&E
for (int 1 =0; 1 < n; i++) { for (int i = 0; 1 < n; 1++) for (int 1 =0; 1 < n; i++) {
for (int j = 0; j < m; j++) { for (int j =0; j < n; j+4 for (int j = 0; j <= i; j++) {
; sum++; e f fogu;i:t k =0; k < m; sum++;
SR P
NXM XL X =0 | |
oo?.ﬁ
Tlnym) = v\ | Z
) = 2nm % "
O(m) o > P ’cvsak\«\bf |
hw \ (p(\"sf\'\ F’
; SUNLS
‘ wi\
= n-—\ ! V}_L}_
2

I

£ d¢ o “’i./' o 12 ‘
15 0 0 14 8 0 7 16

See you on Thursday!

e We'll use what we covered today to analyze some sorting algorithms.
o Get started on Homework 3! Implement yourown DIYArrayListString.
e Reminder that Noah (go/noah) and Smith (go/smith) have office hours throughout the week

and the 201 Course Assistants have drop-in hours in the late afternoons/evenings (go/cshelp).
o Submit exit ticket 4T today.

18

https://noahrizika.github.io/office-hours.html
https://smithgakuya.com/
https://www.cs.middlebury.edu/~mlinderman/courses/cshelp/fall24.html#csci201

