
CSCI 201: Data Structures

Fall 2024

Lecture 4T: Complexity

1

Remember our decision to double the capacity of a DIYList

when we ran out of space during a call to add?

2

Goals for today:

Analyze the runtime cost of our add method for a DIYList as we call it many times.

Characterize how functions grow as the inputs get really big.

Use big-oh notation to describe the running time of algorithms.

3

A few rules for inferring big-oh bounds on algorithm runtime.

consecutive statements: T (n) = T (s1) + T (s2)

statement1; // performing T(s1) amount of work

statement2; // performing T(s2) amount of work

for loop: .T (n) = n× T (b)

for (int i = 0; i < n; i++) {

 // some block performing T(b) amount of work

}

nested for loop: .T (n,m) = n×m× T (b)

for (int i = 0; i < n; i++) {

 for (int j = 0; j < m; j++) {

 // some block performing T(b) amount of work

 }

}

if statements: T (n) = T (c) + max(T (bi),T (be))

if (condition) { // condition performs T(c) amount of work

 body1; // performing T(bi) amount of work

} else {

 body2; // performing T(be) amount of work

}

15

See you on Thursday!

We'll use what we covered today to analyze some sorting algorithms.

Get started on Homework 3! Implement your own DIYArrayListString.

Reminder that Noah () and Smith () have office hours throughout the week

and the 201 Course Assistants have drop-in hours in the late afternoons/evenings ().

Submit exit ticket 4T today.

go/noah go/smith

go/cshelp

18

https://noahrizika.github.io/office-hours.html
https://smithgakuya.com/
https://www.cs.middlebury.edu/~mlinderman/courses/cshelp/fall24.html#csci201

