Middlebury

CSCI 201: Data Structures
Fall 2024

Lecture 3R: Java Collections

NO MORE NEW Java SYNTAX

(almost: maybe a few small things, but not as much as the last few weeks)

Goals for today:

e Use javac and java directly!

e |dentify the difference between an Abstract Data Type and a Data Structure.

e UseanArrayList to store multiple items (of the same type), in which the
number of items can increase/decrease based on the needs of your algorithm.

e Use a HashMap to store key-value pairs.

First, let's unpack what the VS Code play button is doing.

Open a Terminal in the 1lecture06 folder:

usernamelcomputer$ javac CompileThenRunWithArguments. java

username@computer$ java CompileThenRunWithArguments

Now try:

usernamelcomputer$ java CompileThenRunWithArguments x y ¢ 123 MikeWazowski

public class CompileThenRunWithArguments {
public static void main(String[] args) {
System.out.println("Here's what was passed to the program:");
for (int 1 = 0; 1 < args.length; i++) {
System.out.println("Argument [" + 1 + "]: " + args[i]);

}
1if (args.length == 0) System.out.println("Nothing!");

Brainstorm: How would you keep track of which
Pokémon a player has?

2% e e EREYT v ¥

This would be a bit hard to do with fixed-size arrays (directly).
Imagine we had a utility to keep track of this - what methods would you like?

2dd (i): oppend diomts end o LISy
comote (ndex)! Temove Yew ot specite Y, 51
o A s

Luckily, there are tools (built into Java) to help with this.

A collection represents a group of objects, known as its elements.

Collection<E>

)a N
S

2 C“"’“"q .
\

e Abstract Data Type (ADT): formal description of behavior of data type, e.g. a
L1ist allows accessing item at a specified index (but implementation can vary).

e Data Structure: concrete organization/representation of data (implements spec
defined by an ADT). Example: ArrayList.

Okay, let's take a shot at a L1st ourselves.

We'll design our own implementation of a L1st called DIYL1ist.

But first, we should check the L1st spec:
https://docs.oracle.com/javase/8/docs/api/java/util/List.html

N&zb(skolt oth 2 s\6is

Let's focus on methods to: s “4\ M\A --)

1. Constructanempty DIYL1ist. ED m .
2.add anitemtoaDIYL1ist.

3. remove anitemfromaDIYL1ist.

4. Retrieve the number of items (s1ze)inaDIYL1ist.
5.cleartheitemsinaDIYL1st.

Adding (add) anitemtoa DIYL1ist.

Without loss of generality, imagine our DIYL1st canonly hold String items.

public class DIYList { {0{0‘
int size; // current number of items actually stored \ﬂ' (t
String[] items; // capacity is items.length h_____—_——/ SG' "
)(\Nt/ "&I
!<1, s
: Wi i 3‘2}.ﬁﬁ;
0SS Vv
public void add(String item) {

// Is there enough space (capacity, i.e. items.length)?
// If not, make more space and copy the old items.

// Place item in items[size] and increment size.

. < ‘Dkw \g co AA
‘;?,,fj ‘ " cu(’o-;& {\3«5

i 2 G, D~ |l

¥ dowb'C
Xbhe otre
g

./

Removing (remove) an item froma DIYL1ist.

public class DIYList {
int size; // current number of items actually stored
String[] items; // capacity is items.length

public void remove(int index) {
// 1if index is beyond the index of the last item, nothing to do -> return

// replace the item at index with the item at index + 1

// replace the item at index + 1 with the item at index + 2
// replace the item at index + 2 with the item at index + 3
// ... until all items after the index have been shifted left

// decrement size (because we removed an item)

}

o) 13452 g 4 epdyl
eleleiaiilete] [\ s

ol \| P

nﬁﬂﬂﬂﬂﬂl

4
oo, Sartivg dk Y inol =
o m oo o« tems[i]ed

Clearing (cLear) theitemsinaDIYL1ist.

public class DIYList {
int size; // current number of items actually stored
String[] items; // capacity is items.length

public void clear() {
// set all items to null

// set size to O

10

The truth is that we just implemented an ArrayList!

Main idea of an ArrayList:

e Internally use an array to hold the items.
e This array needs to have enough space (capacity) to hold the items.

e To add an item:
= First check if there is enough space.
If not, make a new array with more space and copy the old items into this array.
= Add the new item to the next empty slot.

e How should we increase the capacity?

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ensureCapacity-int-

Each ArrayList instance has a capacity. The capacity 1s the size of the array used to store the
elements in the list. It i1s always at least as large as the list size. As elements are added to an

ArrayList, 1its capacity grows automatically. The details of the growth policy are not specified
beyond the fact that adding an element has constant amortized time cost.

An application can increase the capacity of an ArrayList instance before adding a large number of
elements using the ensureCapacity operation. This may reduce the amount of incremental

reallocation.

11

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#ensureCapacity-int-

Let's practice with ArrayLists.

Note that Java Collections only work with reference types
We cannot directly use primitive types.

How do we use them with int, double, char etc.?
Luckily, there are wrapper classes called Integer,Double,Character, etc.

import java.util.ArrayList; // don't forget this!
// import java.util.*; // can also be convenient to import everything in java.util

public class ArrayListExamples {
public static void main(String[] args) {
// initialize empty array list
ArrayList<Integer> list = new ArrayList<>();

list.add(3);
list.add(12);
list.add(4);

System.out.println("list size = " + list.size()); // 3
for (int 1 = 0; i < list.size(); i++) {

System.out.println("Item[" + i + "]: " + list.get(i));
}

list.remove(l); // remove item at index 1 (i.e. the 12)
System.out.println("list size = " + list.size()); // 2

HashMap: another useful collection to know about.

e HashMap<K, V>:stores key-value pairs (keys have type K and values have type V).
e Useful methods: containsKey (checks if a key of type K exists), put (inserts a key-value pair),
get (retrieves the value associated with some key), keySet (retrieves a Set of all keys).

1 import java.util.HashMap;
2 // import java.util.*; // <-- this can be more convenient!

3
4 public class HashMapExample {
5 public static void main(String[] args) {
6 String lyric = "and 1 love vermont, but it's the season of the sticks";
7
8 HashMap<Character, Integer> frequency = new HashMap<>();
9 for (int i = 0; i < lyric.length(); i++) {
10 char ¢ = lyric.charAt(i);
11 1if (frequency.containsKey(c)) {
12 frequency.put(c, frequency.get(c) + 1);
13 } else {
14 frequency.put(c, 0);
15 }
16 }
17
18 Set<Character> characters = frequency.keySet();
19 for (Character c¢ : characters) {
20 System.out.println("Character " + ¢ + " appears " + frequency.get(c) + " times");
21 }
22 }
23 }

Find The Bug! g

Here it is!

import java.util.HashMap;
// import java.util.*; // <-- this can be more convenient!

4

public class HashMapExample {

public static void main(String[] args) {
String lyric = "and 1 love vermont, but it's the season of the sticks";

HashMap<Character, Integer> frequency = new HashMap<>();
for (int i = 0; i < lyric.length(); i++) {
char ¢ = lyric.charAt(i);
1f (frequency.containsKey(c)) {
frequency.put(c, frequency.get(c) + 1);

} else {

14 frequency.put(c, 1); // first time we encounter a character, it counts,

}

Set<Character> characters = frequency.keySet();

for (Character c¢ : characters) {
System.out.println("Character " + ¢ + " appears " + frequency.get(c) +

so insert 1 not O

times");

14

See you tomorrow!

& ¢

e We'll practice using ArrayListsintomorrow's lab.

e HashMaps were just introduced now in case you find them helpful to solve problems (we'll
talk about the underlying data structures later in the semester).

e HashSets can also be useful if you want to store an unordered set of items.

e Moving forward: labs will be due on Tuesday nights and homeworks will be due on Fridays
(released on Sundays): Homework 2 due 9/27 at 11:59pm.

e Reminder that Noah (go/noah) and Smith (go/smith) have office hours throughout the week

and the 201 Course Assistants have drop-in hours in the late afternoons/evenings (go/cshelp).
e Submit exit ticket 3R today.

15

https://noahrizika.github.io/office-hours.html
https://smithgakuya.com/
https://www.cs.middlebury.edu/~mlinderman/courses/cshelp/fall24.html#csci201

