
Problem Set 6
CSCI 200 Name:
due 04/05/2024

Problem 1 (10 points, 5 points for each part)

Starting at vertex a, perform (a) breadth-first and (b) depth-first search to create a spanning tree of
the following graph. Use alphabetical order to determine the order in which to visit neighboring
vertices. Please show your work and be sure to list the order in which vertices are traversed. If you
would like to draw the tree, see how the mermaid commands are used below to draw the original
graph.

Problem 2 (10 points)

Let G be the graph shown below with the horizontal edges labelled hi,j and vertical edges labelled
vj,i for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3. The weights on the horizontal edges are w(hi,j) = 4i + j whereas
those on the vertical edges are w(vj,i) = 100 + 4j + i. Construct the minimum spanning tree for
using the algorithm we used in Lecture 6W (Prim’s algorithm). Instead of starting at h0,0 (which is
the edge with minimum weight), start with the edge h0,2.

In your answer, please list the sequence in which the edges are added to the MST (using the
original hi,j and vj,i labels). You do not need to include your drawing of the MST, but (if you want)
you can take a picture of your work and add it to your repository (see the "Add file" button above).

h0,0 h1,0 h2,0

v0,0 v1,0 v2,0 v3,0

h0,1 h1,1 h2,1

v0,1 v1,1 v2,1 v3,1

h0,2 h1,2 h2,2

v0,2 v1,2 v2,2 v3,2

h0,3 h1,3 h2,3



Problem Set 6
CSCI 200 Name:
due 04/05/2024

Problem 3 (10 points)

During a team workout of nine athletes, the trainer must create a schedule for each exercise. There
are eight exercises, each of which can be performed by two or three athletes at any given time. The
assigment of athletes to each of the eight exercises is given below:

• E1: Nadia, Eduardo, Charlie

• E2: Nadia, Diane, Eve

• E3: Eduardo, Kento

• E4: Greta, Diane, Hamza

• E5: Greta, Jiao, Eve

• E6: Jiao, Kento

• E7: Jiao, Diane

• E8: Eduardo, Kento, Eve

Clearly, no athlete can be doing different exercises at the same time. We need to help the trainer
by determining the minimum number of time slots required such that all athletes complete all their
assigned exercises.

(a) Recast this problem as a question about coloring the vertices of a particular graph. Draw the
graph and explain what the vertices, edges, and colors represent.

(b) Show a coloring of this graph using the fewest possible colors. What athlete-excercise schedule
does this imply?

To include the graph in your submission, please either (1) take a picture and upload to your repos-
itory (using the "Add file" button above), naming your picture problem3.png (or .jpg) or (2) draw
the graph using mermaid (see Problem 1 for an example, as well as the Mermaid documentation).

When uploading a picture, please either use a .png or .jpg format - do not upload .HEIC files
because they cannot be viewed in the GitHub interface.

Problem 4 (10 points)

Consider the relation R = {(x, y) : x − y is an integer} defined on the set of real numbers.

(a) Show that R is an equivalence relation.

(b) What is the equivalence class that contains 2 for this equivalence relation? Express your result
as a set.

(c) What is the equivalence class that contains 1
2 for this equivalence relation? Express your result

as a set.

https://mermaid.js.org/intro/


Problem Set 6
CSCI 200 Name:
due 04/05/2024

Problem 5 (5 points)

The goal of this problem is to become familiar with running a Python script, specifically in a GitHub
codespace.

Python code is interpreted by a Python interpreter, which is a separate program that you will call to
run your code (similar to how you would use java to run your compiled Java program). Scripts
are run from top to bottom, unlike having a public static void main entry point (if you have
not taken CS 201, don’t worry about this). To run your script (suppose it’s saved to a file called
myscript.py), you would type (in a Terminal):

$ python myscript.py

Note: You wouldn’t actually type the dollar sign ($) - it’s only there because that’s what you’ll see
if you type this in a Terminal.

Instead of running the script locally (on your computer), we’ll run this script using something called
a GitHub codespace (in the cloud!). A codespace is a virtual machine (in the cloud), which you
interact with from your web browser. This codespace will have Visual Studio (VS) Code (a fancy
programming editor) built directly into it, so you will be able to write code, run your code (within
a Terminal) while also having some extensions that make it convenient to save changes to your
repository.

Here’s what to do:

(1) At the top-right of your repository, click on the Code button. Then click on Create codespace
on main.

(2) A new tab will open in your browser with your newly created codespace. It will have a
random name like "silver orbit" or "bookish space barnacle" (see the bottom-left of the editor).
You should also see something like the following in your Terminal:

@philipclaude -> /workspaces/pset6-template (main) $

Now type python problem5.py:

@philipclaude -> /workspaces/pset6-template (main) $ python problem5.py



Problem Set 6
CSCI 200 Name:
due 04/05/2024

Then press the Enter key, and you should see some stuff printed in the terminal.

(3) Copy the output from Step (2) (anything in between the triple-backticks) and paste it into your
README.md file for Problem 5 (the mermaid block is already set up for you). When pasting the
mermaid block into your README.md file, be sure to do this back in your original repository
(not in the README.md in your codespace). Otherwise the changes won’t be synced with your
original problem set repository (unless you follow the steps described in Problem 6).

(4) That’s it! If you want to practice programming, you’ll use this codespace for Problem 6.
Otherwise stop your codespace by clicking on your codespace name at the bottom-left of the
editor:

Then select Stop Current codespace:

Note: Stopping your codespace is a good idea so we don’t waste computing resources. You can also
delete your codespace by navigating to: https://github.com/codespaces. I think it will be auto-
deleted after a certain amount of time anyway.

Have a look at problem5.py, which is running depth-first-search (dfs) on a graph similar to the one
we used in Lecture 6W (note that the edge (’g’, ’h’) is missing from the initial graph). Feel free
to modify the input graph if you want to check your answer to Problem 1.

https://github.com/codespaces


Problem Set 6
CSCI 200 Name:
due 04/05/2024

Problem 6 (optional! but can be used to check your answers)

The main goal of this (optional) problem is to practice programming with graphs (in Python), as
well as pushing changes to GitHub. Please complete Problem 5 before attempting this problem,
then open up your codespace again.

In your repository, you should see the middgraph.py file, which exposes a light interface for rep-
resenting graphs. We’ll call this interface the middgraph "module." Modules are useful for keeping
functions, and class definitions in a separate file. In Python they can be imported with the import

keyword (usually at the top of your script). The middgraph module mainly has a class definition for
a Graph. The constructor (the __init__ function) expects two sets: vertices and edges.

To get started, you might want to see how the dfs function is written using middgraph in the
problem5.py script. Then, implement Prim’s algorithm for finding the minimum spanning tree
(MST) of a graph. The file problem6.py has been set up with the graph from Lecture 6F and the
prims_mst function has been defined but not implemented. Note that the graph from the in-class
example is defined and the sort_edges_by_weight function is called. Please complete the prims_mst

function, using the pseudocode from class (and the notes) to guide your implementation.

Once you’ve implemented this, it will be saved in your codespace, but it won’t be saved to your
repository. This is where we will use git to push the changes to your repository:

(1) Click on the Source Control icon .

(2) All the files you have changed in your codespace should be listed here. Type in a message in
the text box (e.g. solution to problem 6) and then click Commit:

(3) You will probably be asked about staging all your changes, click Yes:



Problem Set 6
CSCI 200 Name:
due 04/05/2024

(4) Now you’re ready to push your changes back to your problem set repository. Click on the
Sync Changes button:

(5) You’ll probably be asked about pulling/pushing your commits - click OK:

(6) Go back to your original problem set repository on GitHub and check that your changes are
there.

There is nothing to write in the problem set README for Problem 6, but make sure that your reposi-
tory includes your changes to problem6.py.

Extra problem: try to implement BFS too! Then you can use the dfs and your bfs function to check
your answer to Problem 1. You may also want to try implementing the graph coloring algorithm
we saw in Lecture 6F.


