Exercise 3: adopting pets.

Suppose you know a family adopted two pets at different times, and you know each pet is either a cat (C) or a dog (D).

1. What is the probability that the family has two cats, if you're told at least one of the pets is a cat?

1. What is the probability that the family has two cats, if you're told at least one of the pets is a cat?

A: two cats

B: at least 1 is a cat

$$P(A) = \frac{1}{4}$$

2. What is the probability that the family has two dogs, if you are told that the first pet is a dog?

A: two dogs
$$p(A) = \frac{1}{4} \quad p(A \cap B) = \frac{1}{4}$$
B: first is a dog
$$p(B) = \frac{2}{4} = \frac{1}{2} \quad p(A \mid B) = \frac{1}{4} = \frac{1}{2}$$

Main problem for today: how probable is it that Eric Reid was drug tested 7 times within the first 11 weeks of the 2018 NFL season?

"That has to be statistically impossible. I'm not a statistician, but there's no way that's random"

Form groups of 3-4 and start brainstorming how you would analyze this:

- **Assume:** (1) 11 week period, (2) 76 players on the team, (3) 10 people chosen from the team to be tested each week.
- How likely is it that Eric Reid is tested at least seven times?

Here's an idea, let's run some simulations!

```
1 import random
3 NP = 76 # number of players on team
4 \text{ NW} = 11 \text{ } # \text{ number of weeks to consider}
 5 NT = 10 # number of players tested each week
 6 NS = 500000 # number of simulations
8 \text{ tested} = [0] * (NW + 1)
 9 players = list(range(NP))
10 PLAYER = 25 # any player should work
11 for s in range(NS):
13
       for w in range(NW):
            random.shuffle(players)
15
            for i in range(NT):
16
                if players[i] == PLAYER:
                    N += 1
18
                    break
       tested[N] += 1
20
21 for i, m in enumerate(tested):
       print(f"tested {i} times: avg = {round(100 * m / NS, 4)} %")
```

Main problem for today: how probable is it that Eric Reid was drug tested 7 times within the first 11 weeks of the 2018 NFL season?

Assumptions:

• 11 week period, 76 players on the team, 10 people chosen from the team to be tested each week. intuition 10 using probability: (75) - pick 9 athecs of 75

- In how many ways can a single player be tested in a 1-week period? 35 10 4 76
- What is the size of the sample space for an 11-week period?
- ullet In how many ways can the NFL pick a player k times for testing over an 11-week period? pick K weeks of 11
- ullet In how many ways can the NFL pick other 10 players for drug testing in the other 11-k weeks? 11-k weeks left, pick 10 from 75 (76-1 since not Reid)
- ullet In how many ways can a single player be tested k times over an 11-week period, i.e. $|E_k|$?
- Probability of a single player being tested exactly k times, $p(E_k)$, for $0 \le k \le 7$? | E_k | = $\binom{11}{4}\binom{75}{10}\binom{75}{10}\binom{75}{10}$ | robability of a single player being tested.
 - Probability of a single player being tested at least 7 times?

P7+P8+P9+P10+P11 & 1- (P0+P1+R+B+B+P9+P8+P6) = 000138%

Possible code to calculate the probablity of being tested at least 7 times.

```
1 \text{ NP} = 76 # number of players on team
2 NW = 11 \# number of weeks to consider
 3 NT = 10 # number of players tested each week
4 s = math.comb(NP, NT) ** NW # size of the sample space
 6 def p_tested(k: int) -> float:
       ek = math.comb(NW, k) * math.comb(NP - 1, NT - 1) ** k \
           * math.comb(NP - 1, NT) ** (NW - k)
       return ek / s
10
11 # calculate the probability of getting tested
12 # at least 7 times using 1 - \sum_{k=0}^6 p_k
13 p_total = 0.
14 for k in range(7):
      pk = p tested(k)
       print(f"prob. tested \{k\} times = \{round(100 * pi, 3)\} %")
       p total += pk
18 p_at_least_7 = 1. - p_total
19 print(f"prob. tested >= 7 times = \{round(100 * p_at_least_7, 5)\}
```