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Learning objectives:
2 identify linear recurrence relations,

2 solve homogeneous linear recurrence relations,

2 solve inhomogeneous linear recurrence relations.

In the last lecture, we introduced a few methods for solving recur-
rence relations: (1) guess and check and (2) expand and pray. Today,
we’ll restrict our attention to special kinds of recurrences that show
up in the Towers of Hanoi problem and the definition of Fibonacci
numbers. We’ll give you some better tools for solving these kinds of
recurrence relations. But first, a motivating example!

...

Let’s say that a newly born pair of baby rabbits is placed somewhere
on campus. Assume that baby rabbits mature into adult rabbits af-
ter one month and, hence, produce a new pair of baby rabbits for the
next month. Also assume that adult rabbit pairs produce a new pair of
baby rabbits every month (and never die). Let the small rabbits (on the
right) represent a pair of baby rabbits, and the large ones to represent
a pair of adult rabbits.

At the start, we have no rabbits, but add a pair of baby rabbits. After
month 1, there is still only 1 pair, but they have matured into adult
rabbits. After month 2, the pair of now adult rabbits breeds a new pair
of baby rabbits, so there are a total of 2 pairs. After month 3, there is a
new pair of baby rabbits from the adult pair and the existing baby pair
has grown into adults. After month 4, the two adult pairs breed two
new baby pairs, and the previous baby pair matures, giving a total of
5 pairs of rabbits. Fibonacci numbers?

Yes! This is the same formula for computing
the nth Fibonacci number!

Example 1:
Let’s derive a general expression for the number of rabbit pairs after
n months. Observe that the total number of pairs at month n is equal
to the number of pairs at month n − 2 (since they create baby pairs
at month n), plus the number of pairs in the previous generation at
n − 1 months. In other words, the total number of pairs at month n,
p(n), is

p(n) = p(n − 2) + p(n − 1). (1)

This is a little more useful than just counting, but it still requires
some calculation to determine the number of pairs after 12 months.
Let’s look for an analytic way to solve this.

Linear recurrence relations are of the form

f (n) = a1 f (n − 1) + a2 f (n − 2) + · · ·+ an−d f (d) + g(n) (2)
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where a1, a2, an−d are constants and d is called the order of the recur-
rence. The function g(n) is some function of n and if g(n) = 0, then
we say that the recurrence is homogeneous.

1 Getting the solution to the homogeneous part

We’ll start by ignoring the g(n) part (and deal with it later). When
looking for a solution to a linear recurrence, guess a solution of the
form: How was I supposed to know to guess

that?

We guess this form because we have a
"feeling" that that the solution will grow
exponentially. Don’t worry, you won’t have to
make up any special guesses when solving
linear homogeneous recurrence relations.

Always guess f (n) = rn .

f (n) = rn

where r is some constant, and plug it back into the recurrence (again,
ignoring g(n)). When doing so, we obtain

rn = a1rn−1 + a2rn−2 + · · ·+ an−drd.

Bringing everything over to the left-hand-side reveals a polynomial in
r:

rn − a1rn−1 − a2rn−2 − · · · − an−drd = 0. (3)

Since we want to figure what r is, we just need to solve for the roots
of this equation (that’s why we used r)! Equation 3 is called the char-
acteristic equation. Let’s go back to those rabbits.

Example 2:
Is Equation 1 a homogeneous linear recurrence relation? What’s the
order? What are the roots of the characteristic equation?

Solution:
Our rabbit pair equation is a homogeneous second-order linear
recurrence relation (d = 2). Substituting p(n) = rn into Equa-
tion 1 gives

p(n) = p(n − 1) + p(n − 2)

rn = rn−1 − rn−2

0 = rn − rn−1 − rn−2

0 = rn−2(r2 − r − 1).

If rn−2 = 0, then that means r = 0, which isn’t very helpful,
because then our solution is p(n) = rn = 0n = 0, which says the
number of rabbit pairs is always zero. If r2 − r − 1 = 0, then we
can get a non-zero solution. Solving for r in r2 − r − 1 = 0 gives
the two roots of the characteristic equation:

r =
1 ±

√
5

2
.
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Great, so we can obtain the roots of the characteristic equation! Now
what? Well, we need to put the solution together! But wait a second,
we said the solution was f (n) = rn, and we got more than one value
for r!? For our rabbits, we have two solutions: p1(n) = ( 1+

√
5

2 )n and

p2(n) = ( 1−
√

5
2 )n. There’s a nice result for linear recurrence relations

that says if we find a solution to a linear recurrence, then any scalar
multiple of that solution is also a solution. Furthermore, if we find
multiple solutions to the recurrence, then any linear combination of
these solutions is also a solution. What if the degree is higher than 2?

It gets a little more difficult to solve for the
roots of the characteristic equation. In this
class, we will only consider first- or second-
order recurrence relations. Anything that is
higher-order becomes a little more difficult
to solve analytically (you can always write a
computer program to solve for the roots!).

Theorem 1. If f1(n), f2(n), . . . , fd(n) are solutions to the linear recurrence
relation of Equation 2, then any linear combination of f1(n), f2(n), . . . , fd(n)
is also a solution to Equation 2. The general solution to Equation 2 can then
be written as

f (n) = c1 f1(n) + c2 f2(n) + · · ·+ cd fd(n) = c1rn
1 + c2rn

2 + · · ·+ cdrn
d .

So for our rabbits, we have

p(n) = c1

(
1 +

√
5

2

)n

+ c2

(
1 −

√
5

2

)n

.

The last thing we need to do is figure out the constant c1 and c2. Luck-
ily, we have some initial conditions that tell us how many pairs there
are at the first few months. In general, when you need to determine
c1, c2, cd for a dth-order recurrence relation, then you will need d ini-
tial conditions. We know that at 0 months, there are no rabbits, so
p(0) = 0. Since they take the first month to mature (without pro-
ducing baby rabbits yet), then we have 1 pair of rabbits after the first
month, so p(1) = 1. Therefore,

p(0) = 0 = c1

(
1 +

√
5

2

)0

+ c2

(
1 −

√
5

2

)0

= c1 + c2,

p(1) = 1 = c1

(
1 +

√
5

2

)1

+ c2

(
1 −

√
5

2

)1

=
1
2
(c1 + c2) +

√
5

2
(c1 − c2).

Solving for c1 and c2 gives How can this possibly equal an integer
number of rabbits????

It’s pretty amazing eh? Despite the
√

5’s and
fractions in this equation, this always evalu-
ates to an integer (for n ∈ N).

c1 =
1√
5

, c2 = − 1√
5

.

So the rabbit population grows at every month as

p(n) =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1 −

√
5

2

)n

.
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2 Repeated roots

When solving for the roots of a polynomial, you may have encounted
situations with repeated roots. For example when finding the roots of
r2 − 4r + 4 = 0, we have the root r = 2 twice. Our general solution
would then be f (n) = c12n. But wait, this is a second-order recurrence
relation, so we should have two initial conditions, and hence, two un-
known constants c1 and c2 to solve for. Therefore, we need two unique
solutions to the recurrence relation. Luckily, there’s another theorem
we can use when this happens.

Theorem 2. If α is a root of the characteristic equation and is repeated m
times, then αn, nαn, n2αn, nm−1αn are all solutions to the recurrence.

Let’s do an example to see where this shows up. This looks familiar!

We actually used this same recurrence rela-
tion in the strong induction lecture.

Example 3:
Consider the following recurrence relation.

f (n) = 4 f (n − 1)− 4 f (n − 2)

with f (0) = 1 and f (1) = 0. Solve for f (n) for any n ∈ 0, 1, 2, . . . .

Solution:
We start by guessing f (n) = rn and plug this into our recurrence
relation. We get

rn − 4rn−1 + 4rn−2 = (r − 2)2 = 0,

which has the root r = 2 twice. By Theorem 2, the two solutions to
the recurrence are

f1(n) = 2n, f2(n) = n2n.

and the general solution to the recurrence is

f (n) = c12n + c2n2n.

Applying the initial conditions f (0) = 1 and f (1) = 0 gives the two
equations we need to determine c1 and c2:

f (0) = 1 = c1

f (1) = 0 = 2c1 + 2c2.

Therefore, c1 = 1 and c2 = −1. The solution to the recurrence is
then

f (n) = (1 − n) 2n,

which can be verified using a proof by strong induction.

https://philipclaude.github.io/csci200s24/docs/L04M-strong-induction.pdf
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3 Solving for the inhomogeneous part (optional)

What if I kept adding a new pair of baby rabbits every month? Then
the recurrence relation would no longer be homogeneous because we
would need to account for the extra 1 pair every month. The recur-
rence relation of Equation 1 then becomes

p(n) = p(n − 2) + p(n − 1) + 1

which means g(n) = 1. When you have an inhomogeneous recurrence
relation, you first need to solve the inhomogeneous part, and then
determine the particular solution fp(n), which accounts for the inhomo-
geneous part.

g(n) guess for fp(n)
c k

c1n + c2 k1n + k2
c1n2 + c2n + c3 k1n2 + k2n + k3

crn krn

Table 1: Guesses for the par-
ticular solution fp(n) given a
form for the inhomogeneous
part g(n).

Example 4:
Find the solution to the recurrence relation p(n) = p(n − 2) + p(n −
1) + 1 with p(0) = 0 and p(1) = 1.

Solution:
We can start by recycling the solution to the homogeneous part,
since this doesn’t change. In order to solve for the particular
solution fp(n), we will guess a solution of the form fp(n) = k
where k is some constant. We guess this because 1 is a constant,
so the fp(n) should have a similar form. We then substitute fp(n)
into the recurrence relation, giving

fp(n) = fp(n − 1) + fp(n − 2) → k = k + k + 1

Therefore k = −1. The solution to the recurrence is then

f (n) = fh(n) + fp(n) = c1

(
1 +

√
5

2

)n

+ c2

(
1 −

√
5

2

)n

− 1.

Using the initial conditions p(0) = 0 and p(1) = 1 gives the
constants c1 = (3 +

√
5)/(2

√
5) and c2 = (

√
5 − 3)/(2

√
5).

In the last example, we guess that g(n) was some constant. In gen-
eral, you should assume a form for fp(n) that looks like g(n). Table 1

summarizes a few common guesses for a particular solution, given a
form for g(n). If a guess fails (after you try to match coefficients), then
guess substitute your polynomial for one that is one degree higher, as
in the next example.
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Example 5:
Find the general solution to the recurrence relation f (n) = 2 f (n −
1) + 2n with f (0) = 1.

Solution:
This is a first-order linear recurrence relation. Starting by guess-
ing f (n) = rn gives the characteristic equation for the homoge-
neous part: r − 2 = 0. We have only one root: r = 2. The solution
to the homogeneous part is then fh(n) = 2n. The particular so-
lution can be obtained by guessing fp(n) = k2n. Substituting
this into the recurrence relation gives k2n = 2k · 2n−1 + 2n. This
means that k = k + 1 which means our guess failed. As per the
recommendation, we should then guess a polynomial (instead of
k, which is constant) that is linear: fp(n) = (k1n + k2)2n. Doing
so gives

(k1n+ k2)2n = 2(k1(n− 1)+ k2)2n−1 + 2n = (k1(n− 1)+ k2)2n + 2n.

Since 2n ̸= 0, then we have k1n + k2 = k1(n − 1) + k2 + 1. Match-
ing coefficients for the constant terms gives k2 = k2 − k1 + 1,
which means k1 = 1, and we can pick k2 = 0. The general solu-
tion is then

f (n) = c12n + n2n.

Applying the initial condition f (0) = 1 yields c1 = 1, so our
solution to the recurrence is finally

f (n) = 2n + n2n.

Check your work!

If you have time (you don’t have to), it’s
a good idea to check your solution indeed
solves the recurrence relation using a proof
by induction (or strong induction if neces-
sary).
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