
Recurrence relations
Lecture 10M page 1

04/22/2024 Philip’s notes

Learning objectives:
2 develop recurrence relations to analyze the performance of recursive algorithms,

2 solve recurrence relations using the guess and check method,

2 solve recurrence relations using the expand and pray metod.

The goal for this lecture is to use some simple methods to solve re-
currence relations. But first, we need to understand why recurrence
relations are important. Where and how do they even show up? Well,
they show up in a lot of places. Remember merge-sort? In an intro-
ductory class, you probably got a pretty hand-wavy explanation as to
why the run-time of merge-sort is O(n log n). Actually, we can analyze
this algorithm by developing a recurrence relation, and then solving
it. But recurrence relations also show up in real life, like population
dynamics and other areas of mathematical modeling. Consider the
following example.

Figure 1: Solving the Towers
of Hanoi puzzle (moves are or-
dered from top to bottom).

Example 1:
The Tower of Hanoi is a famous mathematical game invented in
1883 that consists of displacing n disks (of different diameters) from
one rod to another, using only three rods. The game starts out with
all n disks ordered from largest to smallest on one rod, as shown
in Figure 1 with n = 3. The objective of the game is to displace all
disks to another rod, such that they exhibit the same ordering on
the new rod. The catch, however, is that larger disks can never be
stacked on top of a smaller one. Here are the rules:

(1) Only one disk can be moved at a time.

(2) Every move consists of displacing a disk from the top of one
stack, to the top of another stack (or an empty rod).

(3) No larger disk can ever be placed on top of a smaller one.

You can also try playing the game here. How many moves does it
take to displace the entire stack of n disks?

Let’s now analyze the Towers of Hanoi puzzle. How many moves does
it take to displace n = 2 disks? It takes three moves: one to displace the
top (small) disk, another to displace the large one, and a third move to
displace the small disk back onto the new position of the large disk.
What about if n = 3? Well, we can extend our solution to the n = 2
case by just saying that it takes 3 moves to fully displace the first two
disks (call this T(2)), then one to displace the bottom (largest) disk
(+1), and finally another 3 moves to displace the smallest two disks
(which are now ordered) back onto the new position of the bottom

https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://www.mathsisfun.com/games/towerofhanoi.html


Recurrence relations
Lecture 10M page 2

04/22/2024

disk (incurring another T(2)). Therefore,

T(3) = T(2) + T(2) + 1 = 2T(2) + 1.

The pattern stays the same as we increase n and we can write the
minimum number of moves to displace n disks as

T(n) = 2T(n − 1) + 1

Now we need to solve this! Ultimately, we want to solve for T(n) such
that there are no other T(i)’s on the right-hand-side. In general, you
will also be given T(base), i.e. how many moves it takes if you have
n = 1 disk? Hmmm this sounds like recursion. . .

Yes! At the end of the lecture we will actually
be able to analyze the performance of some
recursive algorithms.

1 Method #1: guess and check

The guess and check method isn’t all that fancy. It takes a little bit of
intuition to guess a solution to the recurrence relation, so I don’t really
recommend this method. Once you guess a solution, you must verify
it using a proof by induction.

Example 2:
Let’s guess a solution to the recurrence relation for the Towers of
Hanoi puzzle. Specifically, try T(n) = 2n − 1.
Proof. We use a proof by induction on n. Let the induction hypoth-
esis be the predicate p(n): T(n) = 2n − 1 solves the recurrence relation
T(n) = 2T(n − 1) + 1.

Base case: For n = 1, we have T(1) = 21 − 1 = 1, which verifies
that we only need one move with a single disk.

Inductive step: Assume p(n) is true. That is, it takes 2n − 1
moves to displace n disks. We need to show that it takes T(n +

1) = 2n+1 − 1 moves to displace n + 1 blocks. From the recur-
rence relation, we have

T(n + 1) = 2T(n + 1 − 1) + 1 from recurrence relation,

= 2(2n − 1) + 1 by p(n),

= 2n+1 − 2 + 1 manipulating,

= 2n+1 − 1 verifying p(n + 1).

By induction on n, p(n) is true.

It’s not always easy to guess a solution to a recurrence relation, so we
need another method.



Recurrence relations
Lecture 10M page 3

04/22/2024

2 Method #2: expand and pray

The expand and pray method is a little fancier than the guess and check
method, but still has its drawbacks. With this method, you keep sub-
stituting values for T(n), T(n − 1), T(n − 2), . . . until you notice a
pattern. This trick is noticing the pattern, and then applying some
knowledge about sequences and series to find a solution.

Example 3:
Expanding a few terms in the recurrence relation for the Towers of
Hanoi puzzle gives

T(n) = 1 + 2T(n − 1)

= 1 + 2(1 + 2T(n − 2))

= 1 + 2 + 4T(n − 2)

= 1 + 2 + 4(1 + 2T(n − 3))

= 1 + 2 + 4 + 23T(n − 3)

=
n

∑
i=1

2i−1

=
1 − 2n

1 − 2
formula for a geometric series

= 2n − 1.
Remember a geometric series!

Recall that the formula for the sum of a ge-
omtric series is

n

∑
i=0

ri =
1 − rn+1

1 − r
.

3 Analyzing the complexity of recursive algorithms

Recurrence relations can be developed when analyzing the number of
operations performed in recursive algorithms. In general, the recursive
algorithms we will study (and that you will see in the future) will be
in one of two forms.

3.1 Linear form

The first form is described in Algorithm 1 and will be referred to as
the linear form. Here, the recursive case returns a linear combination
of other recursive function calls, where the input variable linearly de-
creases upon each call.

The Towers of Hanoi is an example of this type of recursive algo-
rithm. Can you think of another?



Recurrence relations
Lecture 10M page 4

04/22/2024

recursive(n)

input: n (size of problem), some other data
output: some output

1 if n at base case
2 return c0 (some value for the base case)
3 else
4 return cn−1 · recursive(n − 1) + cn−2 · recursive(n − 2) + . . .

+c2 · recursive(2) + c1 · recursive(1) + d

Algorithm 1: General outline of a linear
recursive algorithm with a base case and
recursive function call. Note that g(n)
is some function of n. The goal is to
analyze how many operations are per-
formed in these types of algorithms.

Example 4:
Consider the pseudocode to compute Fibonacci numbers, listed in
Algorithm 2. See if you can determine the coefficients ci 0 ≤ i ≤
n − 1.

Solution:
Matching coefficients with the general form in Algorithm 1 gives
cn−1 = 1 and cn−2 = 1. All other ci’s are zero except c0 = 1.

fibonacci(n)

input: n (integer))
output: some output

1 if n ≤ 1
2 return 0
3 else
4 return fibonacci(n − 1) + fibonacci(n − 2)

Algorithm 2: Recursive program to
compute Fibonacci numbers. Compare
this to Algorithm 1 and notice that
cn−1 = 1 and cn−2 = 1. All other ci’s
are zero except c0 = 1. Also, f (n) = 0.



Recurrence relations
Lecture 10M page 5

04/22/2024

recursive(n)

input: n (size of problem), some other data
output: some output

1 if n at base case
2 return c0 (some value for the base case)
3 else
4 return ck · recursive(bkn) + ck−1 · recursive(bk−1n) + . . .

+c2 · recursive(b2n) + c1 · recursive(b1n) + d

Algorithm 3: General outline of a
divide-and-conquer recursive algorithm
with a base case and recursive function
call. Note that g(n) is some function of
n. The goal is to analyze how many op-
erations are performed in these types of
algorithms.

3.2 Divide-and-conquer (DC) form

The other form we will study is described in Algorithm 3.
Merge-sort is an example of a divide-and-conquer algorithm. Re-

member that the general idea of merge-sort is to break an array into
two arrays (each half the size of the original) and then sort those two
sub-arrays by recursively breaking them into sub-arrays, sorting them
recursively, etc., until we get to arrays of length 1, which can be triv-
ially sorted. Once we’ve sorted the sub-arrays, we then merge them
back together, which incurs n − 1 comparisons (where n is the size of
the full array). The number of operations required in merge-sort is
then

T(n) = # ops to merge + # ops to sort two chunks (recursively)

= (n − 1) + 2T(n/2) (1)

So merge sort has k = 1, with c1 = 2 and b1 = 1
2 . There is an extra

amount of work that is done, separate from the recursive function calls:
the (n − 1) operations that are needed to merge the two sorted sub-
arrays. We will explore the details of how to solve divide-and-conquer
recurrence relations in a few lectures. Akra & Bazzi

In fact, Akra & Bazzi were students at the
time they discovered a general method for
solving recurrences, which is pretty amaz-
ing!

3.3 Combinations of both forms

You can certainly have algorithms that combine both the linear and
divide-and-conquer forms, however, the methods to solve these is be-
yond the scope of this course. A more general method to solve these
types of recurrences was developed by Akra & Bazzi in 1996.


	Method #1: guess and check
	Method #2: expand and pray
	Analyzing the complexity of recursive algorithms
	Linear form
	Divide-and-conquer (DC) form
	Combinations of both forms


