Learning objectives:

identify divide-and-conquer recurrence relations,
apply the tree method to solve divide-and-conquer recurrence relations,
\square analyze the complexity of merge-sort and binary search algorithms.

In the last lecture, we looked at recurrences of the form $f(n)=$ $\sum_{i=1}^{d} a_{i} f(n-i)$. Today, we'll still consider linear recurrences, but instead of having a rate of 1 (in front of the n term), we'll consider recurrences that result from breaking the problem into smaller chunks upon every recursive function call. Let's motivate this by analyzing merge-sort.

Given an array of n items, merge sort consists of the following steps:

- If $n=1$, then return the single item because this is automatically

Linear?

We called these linear because the $(n-i)$ part is linear in n. sorted.

- Otherwise, break up the array into two pieces, each of length $n / 2$ and call merge-sort on each sub-array. Then, merge the two sorted sub-arrays.

Example 1:

Apply merge-sort to sort the array of integers $[12,5,16,3,1,8,4,9]$.

Solution:

Let's visualize the sorting procedure with a graph. The black edges represent recursive calls to merge-sort and, equivalently, when the input arrays are broken into two sub-arrays. The red edges represent the merging procedure.

How many operations are performed in merge-sort? We can determine the number of operations by developing a recurrence relation. The number of operations during any particular call to merge-sort on an input array of length n requires $n-1$ operations to merge the two subarrays since we need to compare the leading (lowest) remaining values of each sub-array, comparing them with the current lowest value in the merged array, incurring at most $n-1$ comparisons - we don't need to do a comparison for the last remaining value. Note that no comparisons are needed when we have a single value ($n=1$). Since we need to call merge-sort on both sub-arrays, then the number of operations needed to sort an array of length n is

$$
\begin{equation*}
T(n)=2 T(n / 2)+n-1 \tag{1}
\end{equation*}
$$

Example 2:

Use the expand-and-pray method to verify the number of operations of merge-sort is $O(n \log n)$.

Solution:

We can write out the first few terms of the recurrence relation in Equation 1 and try to see a pattern:

$$
\begin{aligned}
T(n) & =(n-1)+2 T\left(\frac{n}{2}\right) \\
& =(n-1)+2\left(\left(\frac{n}{2}-1\right)+2 T\left(\frac{n}{4}\right)\right) \\
& =(n-1)+(n-2)+4 T\left(\frac{n}{4}\right) \\
& =(n-1)+(n-2)+4\left(\left(\frac{n}{4}-1\right)+\right. \\
& =(n-1)+(n-2)+(n-4)+8 T(\\
& =(n-1)+(n-2)+(n-4)+\cdots+ \\
& =(n-1)+(n-2)+(n-4)+\cdots+ \\
& =\sum_{i=0}^{\log n-1}\left(n-2^{i}\right) \\
& =\sum_{i=0}^{\log n-1} n-\sum_{i=0}^{\log n-1} 2^{i} \\
= & n \log n-\left(2^{\log n}-1\right) \\
= & n \log n-n+1
\end{aligned}
$$

$$
=(n-1)+(n-2)+4\left(\left(\frac{n}{4}-1\right)+2 T\left(\frac{n}{8}\right)\right)
$$

$$
=(n-1)+(n-2)+(n-4)+8 T\left(\frac{n}{8}\right)
$$

$$
=(n-1)+(n-2)+(n-4)+\cdots+\left(n-2^{i-1}\right)+2^{i} T\left(\frac{n}{2^{i}}\right)
$$

$$
=(n-1)+(n-2)+(n-4)+\cdots+\left(n-2^{\log n-1}\right)+2^{\log n} \underbrace{T(1)}_{0}
$$

The detailed number of operations is $T(n)=n \log n-n+1$, which is $O(n \log n)$.
Lecture 10 F
$04 / 26 / 2024$$\quad$ Divide-and-conquer recurrences

The expand-and-pray method worked fine, but it's a bit tricky when the recurrence relation is more complicated. Luckily, there is a more formal method for solving recurrences of this type. We call these types of recurrences divide-and-conquer recurrences, since we are "dividing" the problem into a few subproblems, "conquering" those subproblems, and then solving the current problem using the solution to the subproblems.

1 Tree method for divide-and-conquer recurrences

Consider a recurrence relation of the form

$$
\begin{equation*}
f(n)=a \cdot f\left(\frac{n}{b}\right)+c \cdot n^{d} \tag{2}
\end{equation*}
$$

where $n=b^{k}$ for some $k \in \mathbb{Z}^{+}, a \geq 1, b>1, b \in \mathbb{Z}, c>0, d \geq 0$ and $a, c, d \in \mathbb{R}$. We can characterize the complexity of $f(n)$ for various cases:

$$
f(n)= \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Before we can apply the theorem, it's important to be able to say in words what all the terms in Equation 2 mean:

- a : number of subproblems created during the recursive step,
- b : factor by which problem shrinks in the recursive steps,
- c, d : characterizes extra work performed outside of recursive function call.

In other words, divide-and-conquer algorithms divide a problem of size n into a subproblems, each of which has a size of n / b. Let's do a few examples to practice applying this method.

Example 3:

Use the Tree Method to determine the complexity of merge-sort.

Solution:

Matching coefficients in Equation 1 with Equation 2 gives $a=2$, $b=2, d=1$. Since $a=b^{d}$, then $T(n)=O(n \log n)$.

Master Theorem versus Tree Method? In textbooks, this is often known as the Master Theorem for solving divide-and-conquer recurrence relations, which can be proved by induction. However, the use of the word "master" can have negative connotations, so we will call this method the Tree Method. In fact, there exists a more general method, proved by Akra \& Bazzi in 1996.
Lecture $10 \mathrm{~F} \quad$ Divide-and-conquer recurrences
$04 / 26 / 2024$

Four operations?

Example 4:

Develop a recurrence relation for the binary search algorithm, described in Algorithm 1 and apply the Tree Method to determine the number of operations executed in binary search.

Solution:

On each entry to the function, the binary search algorithm makes a single recursive function call, depending on the value of the middle index m, x and a (either Lines 9 or 11 are executed, but never both). Each of these divides the problem into half. There are four operations: one to retrieve the length of the array, another to compute the middle index, a comparison with the requested value, and a final one to determine whether we need to search the lower/upper half of the array. We'll just use a constant c to represent these operations.

$$
T(n)=T(n / 2)+c
$$

Since only a single operation is performed in the $n=0$ case, then $T(0)=1$. Again, the actual value of the constant doesn't really matter (i.e. if you have 0,1 or even 2 operations), as long as it is independent of n. Using the Tree method, we identify the constants as $a=1 b=2$ and $d=0$, so $T(n)=O(\log n)$.

```
binary_search(a,x)
    input: sorted array a, value x
    output: boolean as to whether a contains the value }
    n\leftarrow length (a)
    if }n==
        return False
    else
        m\leftarrown//2# use integer division to get middle index
        if }a[m]==
            return True
        else if }a[m]<
            return binary_search(a[m:n],x)
        else
            return binary_search(a[0:m],x)
```


Depending on how you write the code, you might have a few more or a few less operations, so we'll just say that we take c (where c is some constant) operations on each recursive call, before dividing the problem and making subsequent recursive calls.

Algorithm 1: Binary search algorithm to determine if an array a contains a value x (returns True or False)

Lecture 10 F	Divide-and-conquer recurrences	page 5
$04 / 26 / 2024$		

2 Derivation of the Tree method

Let's derive the Tree method! You'll also see why it's called the Tree method. Recall we're working with divide-and-conquer recurrences of the form:

$$
f(n)=a \cdot f\left(\frac{n}{b}\right)+c \cdot n^{d}
$$

where $n=b^{k}$ for some $k \in \mathbb{Z}^{+}, a \geq 1, b>1, b \in \mathbb{Z}, c>0, d \geq 0$ and $a, c, d \in \mathbb{R}$. Recall that a refers to the number of subproblems created on each recursive step, b is the fraction by which the problem size decreases on each recursive function call, and n^{d} characterizes the amount of work done (in the recursive step) separate from the recursive function call.

Consider drawing a stack diagram for the recursive function calls. This will look like a tree, in which each internal vertex has a children. Let k represent the number of levels we have traversed down the tree.

Example 5:

(a) How many vertices are there at level k ?
(b) What is the size of the problem at level k ?
(c) How much work is done within a single vertex of the tree at level k ?
(d) How much work is done at level k ?
(e) At what level will the original array of length n have been broken up into arrays of length 1 ?
(f) How much total work is done?
(g) Simplify your expression for part (f) for the case when n gets really really big. Do this for three cases: (i) $a<b^{d}$, (ii) $a=b^{d}$ and (iii) $a>b^{d}$.

Solution:

(a) a^{k}
(b) n / b^{k}
(c) $\left(n / b^{k}\right)^{d}$
(d) $a^{k}\left(n / b^{k}\right)^{d}=n^{d}\left(a / b^{d}\right)^{k}$
(e) $\log _{b} n$
(f) Adding up the work done in every leaf gives:

$$
\sum_{k=0}^{\log _{b} n}\left(a / b^{d}\right)^{k} n^{d}=n^{d} \sum_{k=0}^{\log _{b} n}\left(a / b^{d}\right)^{k}
$$

(g) This looks like a geometric series with $r=a / b^{d}$. Recall our general formula for a geometric series (for $r \neq 1$), is

$$
\sum_{k=0}^{N} r^{k}=\frac{1-r^{N+1}}{1-r}
$$

Here, $N=\log _{b} n$. When $r<1$ and n gets really really big, the summation is equal to $1 /(1-r)$. Therefore, for $a<b^{d}$, we have $1 /\left(1-a / b^{d}\right)=b^{d} / 1-b^{d}$. But don't forget the n^{d} in front, which is actually the dominant term in our final expression, so for $a<b^{d}$, (i) $f(n)=O\left(n^{d}\right)$. When $r=1$ (ii), then the summation is equal to $\log _{b} n+1$, and remembering the n^{d} in front, we have $f(n)=O\left(n^{d} \log _{b} n\right)$. For the last case, $a>b^{d}$, we have

$$
n^{d}\left(\frac{1-\left(\frac{a}{b^{d}}\right)^{\log _{b} n}}{1-a / b^{d}}\right)=\mathcal{O}\left(n^{d}\left(\frac{a}{b^{d}}\right)^{\log _{b} n}\right)=\mathcal{O}\left(n^{\log _{b} a}\right)
$$

To prove that last step, recall that $x^{y}=e^{y \log x}$. Letting $x=\left(a / b^{d}\right)$, we then have $n^{d} e^{\log x \log n / \log b}=e^{(\log a-d \log b) \log n / \log b+d \log n}=$ $e^{\log a \log n / \log b}=e^{\log n\left(\log _{b} a\right)}=n^{\log _{b} a}$.

