
Divide-and-conquer recurrences
Lecture 10F page 1

04/26/2024 Philip’s notes

Learning objectives:
2 identify divide-and-conquer recurrence relations,

2 apply the tree method to solve divide-and-conquer recurrence relations,

2 analyze the complexity of merge-sort and binary search algorithms.

In the last lecture, we looked at recurrences of the form f (n) =
d
∑

i=1
ai f (n− i). Today, we’ll still consider linear recurrences, but instead Linear?

We called these linear because the (n− i)-
part is linear in n.

of having a rate of 1 (in front of the n term), we’ll consider recurrences
that result from breaking the problem into smaller chunks upon every
recursive function call. Let’s motivate this by analyzing merge-sort.

Given an array of n items, merge sort consists of the following steps:

• If n = 1, then return the single item because this is automatically
sorted.

• Otherwise, break up the array into two pieces, each of length
n/2 and call merge-sort on each sub-array. Then, merge the two
sorted sub-arrays.

Example 1:
Apply merge-sort to sort the array of integers [12, 5, 16, 3, 1, 8, 4, 9].

Solution:
Let’s visualize the sorting procedure with a graph. The black
edges represent recursive calls to merge-sort and, equivalently,
when the input arrays are broken into two sub-arrays. The red
edges represent the merging procedure.

[12, 5, 16, 3, 1, 8, 4, 9]

[12, 5, 16, 3] [1, 8, 4, 9]

[12, 5] [16, 3] [1, 8] [4, 9]

[12] [5] [16] [3] [1] [8] [4] [9]

[1, 3, 4, 5, 8, 9, 12, 16]

[3, 5, 12, 16] [1, 4, 8, 9]

[5, 12] [3, 16] [1, 8] [4, 9]

Divide-and-conquer recurrences
Lecture 10F page 2

04/26/2024

How many operations are performed in merge-sort? We can determine
the number of operations by developing a recurrence relation. The
number of operations during any particular call to merge-sort on an
input array of length n requires n− 1 operations to merge the two sub-
arrays since we need to compare the leading (lowest) remaining values
of each sub-array, comparing them with the current lowest value in the
merged array, incurring at most n− 1 comparisons - we don’t need to
do a comparison for the last remaining value. Note that no compar-
isons are needed when we have a single value (n = 1). Since we need
to call merge-sort on both sub-arrays, then the number of operations
needed to sort an array of length n is

T(n) = 2T(n/2) + n− 1. (1)

Why is the upper bound of the sum
log n− 1?

It takes log n times to break up the array
of length n in half into subarrays of length
1 (assuming the base of the log is 2). Our
sum starts at i = 0, so will get log n terms
in the summation with an upper bound of
log n− 1.

Example 2:
Use the expand-and-pray method to verify the number of operations
of merge-sort is O(n log n).

Solution:
We can write out the first few terms of the recurrence relation in
Equation 1 and try to see a pattern:

T(n) = (n− 1) + 2T
(n

2

)
= (n− 1) + 2

((n
2
− 1

)
+ 2T

(n
4

))
= (n− 1) + (n− 2) + 4T

(n
4

)
= (n− 1) + (n− 2) + 4

((n
4
− 1

)
+ 2T

(n
8

))
= (n− 1) + (n− 2) + (n− 4) + 8T

(n
8

)
= (n− 1) + (n− 2) + (n− 4) + · · ·+

(
n− 2i−1

)
+ 2iT

(n
2i

)
= (n− 1) + (n− 2) + (n− 4) + · · ·+

(
n− 2log n−1

)
+ 2log n T(1)︸︷︷︸

0

=
log n−1

∑
i=0

(
n− 2i

)
=

log n−1

∑
i=0

n−
log n−1

∑
i=0

2i

= n log n−
(

2log n − 1
)

= n log n− n + 1

The detailed number of operations is T(n) = n log n − n + 1,
which is O(n log n).

Divide-and-conquer recurrences
Lecture 10F page 3

04/26/2024

The expand-and-pray method worked fine, but it’s a bit tricky when
the recurrence relation is more complicated. Luckily, there is a more
formal method for solving recurrences of this type. We call these types
of recurrences divide-and-conquer recurrences, since we are "dividing"
the problem into a few subproblems, "conquering" those subproblems,
and then solving the current problem using the solution to the sub-
problems.

1 Tree method for divide-and-conquer recurrences

Consider a recurrence relation of the form

f (n) = a · f
(n

b

)
+ c · nd (2)

where n = bk for some k ∈ Z+, a ≥ 1, b > 1, b ∈ Z, c > 0, d ≥ 0
and a, c, d ∈ R. We can characterize the complexity of f (n) for various
cases:

f (n) =


O(nd) if a < bd

O(nd log n) if a = bd

O(nlogb a) if a > bd.

Before we can apply the theorem, it’s important to be able to say in Master Theorem versus Tree Method?
In textbooks, this is often known as the Master
Theorem for solving divide-and-conquer re-
currence relations, which can be proved by
induction. However, the use of the word "mas-
ter" can have negative connotations, so we
will call this method the Tree Method. In fact,
there exists a more general method, proved
by Akra & Bazzi in 1996.

words what all the terms in Equation 2 mean:

• a: number of subproblems created during the recursive step,

• b: factor by which problem shrinks in the recursive steps,

• c, d: characterizes extra work performed outside of recursive func-
tion call.

In other words, divide-and-conquer algorithms divide a problem of
size n into a subproblems, each of which has a size of n/b. Let’s do a
few examples to practice applying this method.

Example 3:
Use the Tree Method to determine the complexity of merge-sort.

Solution:
Matching coefficients in Equation 1 with Equation 2 gives a = 2,
b = 2, d = 1. Since a = bd, then T(n) = O(n log n).

Divide-and-conquer recurrences
Lecture 10F page 4

04/26/2024

Four operations?

Depending on how you write the code, you
might have a few more or a few less opera-
tions, so we’ll just say that we take c (where
c is some constant) operations on each re-
cursive call, before dividing the problem and
making subsequent recursive calls.

Example 4:
Develop a recurrence relation for the binary search algorithm, de-
scribed in Algorithm 1 and apply the Tree Method to determine the
number of operations executed in binary search.

Solution:
On each entry to the function, the binary search algorithm makes
a single recursive function call, depending on the value of the
middle index m, x and a (either Lines 9 or 11 are executed, but
never both). Each of these divides the problem into half. There
are four operations: one to retrieve the length of the array, another
to compute the middle index, a comparison with the requested
value, and a final one to determine whether we need to search
the lower/upper half of the array. We’ll just use a constant c to
represent these operations.

T(n) = T(n/2) + c.

Since only a single operation is performed in the n = 0 case, then
T(0) = 1. Again, the actual value of the constant doesn’t really
matter (i.e. if you have 0, 1 or even 2 operations), as long as
it is independent of n. Using the Tree method, we identify the
constants as a = 1 b = 2 and d = 0, so T(n) = O(log n).

binary_search(a, x)

input: sorted array a, value x
output: boolean as to whether a contains the value x

1 n← length(a)
2 if n == 0
3 return False

4 else
5 m← n//2 # use integer division to get middle index
6 if a[m] == x
7 return True

8 else if a[m] < x
9 return binary_search(a[m : n], x)
10 else
11 return binary_search(a[0 : m], x)

.

Algorithm 1: Binary search algorithm to
determine if an array a contains a value
x (returns True or False)

Divide-and-conquer recurrences
Lecture 10F page 5

04/26/2024

2 Derivation of the Tree method

Let’s derive the Tree method! You’ll also see why it’s called the Tree
method. Recall we’re working with divide-and-conquer recurrences of
the form:

f (n) = a · f
(n

b

)
+ c · nd

where n = bk for some k ∈ Z+, a ≥ 1, b > 1, b ∈ Z, c > 0, d ≥ 0
and a, c, d ∈ R. Recall that a refers to the number of subproblems
created on each recursive step, b is the fraction by which the problem
size decreases on each recursive function call, and nd characterizes the
amount of work done (in the recursive step) separate from the recur-
sive function call.

Consider drawing a stack diagram for the recursive function calls. This
will look like a tree, in which each internal vertex has a children. Let k
represent the number of levels we have traversed down the tree.

Example 5:
(a) How many vertices are there at level k?

(b) What is the size of the problem at level k?

(c) How much work is done within a single vertex of the tree at
level k?

(d) How much work is done at level k?

(e) At what level will the original array of length n have been bro-
ken up into arrays of length 1?

(f) How much total work is done?

(g) Simplify your expression for part (f) for the case when n gets
really really big. Do this for three cases: (i) a < bd, (ii) a = bd and
(iii) a > bd.

Solution:
(a) ak

(b) n/bk

(c) (n/bk)d

(d) ak(n/bk)d = nd(a/bd)k

(e) logb n

Divide-and-conquer recurrences
Lecture 10F page 6

04/26/2024

(f) Adding up the work done in every leaf gives:

logb n

∑
k=0

(a/bd)knd = nd
logb n

∑
k=0

(a/bd)k

(g) This looks like a geometric series with r = a/bd. Recall our
general formula for a geometric series (for r ̸= 1), is

N

∑
k=0

rk =
1− rN+1

1− r

Here, N = logb n. When r < 1 and n gets really really big,
the summation is equal to 1/(1− r). Therefore, for a < bd, we
have 1/(1− a/bd) = bd/1− bd. But don’t forget the nd in front,
which is actually the dominant term in our final expression, so
for a < bd, (i) f (n) = O(nd). When r = 1 (ii), then the summation
is equal to logb n + 1, and remembering the nd in front, we have
f (n) = O(nd logb n). For the last case, a > bd, we have

nd

1−
(

a
bd

)logb n

1− a/bd

 = O
(

nd
(a

bd

)logb n
)
= O(nlogb a).

To prove that last step, recall that xy = ey log x. Letting x = (a/bd),
we then have ndelog x log n/ log b = e(log a−d log b) log n/ log b+d log n =

elog a log n/ log b = elog n(logb a) = nlogb a.

	Tree method for divide-and-conquer recurrences
	Derivation of the Tree method

