Lecture 10F
04/26/2024

- page 1
Divide-and-conquer recurrences e
Philip’s notes

Learning objectives:
O identify divide-and-conquer recurrence relations,

O apply the tree method to solve divide-and-conquer recurrence relations,

O analyze the complexity of merge-sort and binary search algorithms.

In the last lecture, we looked at recurrences of the form f(n) =
d
Y. a;f (n—i). Today, we'll still consider linear recurrences, but instead Linear?
i=1

of having a rate of 1 (in front of the n term), we’ll consider recurrences
that result from breaking the problem into smaller chunks upon every
recursive function call. Let’s motivate this by analyzing merge-sort.

Given an array of n items, merge sort consists of the following steps:

We called these linear because the (n — i)-

¢ If n = 1, then return the single item because this is automatically part s linear in 1.

sorted.

e Otherwise, break up the array into two pieces, each of length
n/2 and call merge-sort on each sub-array. Then, merge the two
sorted sub-arrays.

Example 1:
Apply merge-sort to sort the array of integers [12,5,16,3,1,8,4,9].

Solution:

Let’s visualize the sorting procedure with a graph. The black
edges represent recursive calls to merge-sort and, equivalently,
when the input arrays are broken into two sub-arrays. The red
edges represent the merging procedure.

[12,5,16,3,1,8, 4,9]
— T—
[12,5,16,3] [1,8,4,9]
[12,5] 116,3] 1,9 14,9]
¥ ¥ ¥) ¥ 1
[12] [5] [16] 3] 1] 8] (4] 9]
N M N M N M N M
[5, 12] [3, 16] [1, 8] [4, 9]
3,5,12,16] 1,4,8,9]

\ /

1,3,4,5,8,9,12,16]

Lecture 10F

Divide-and-conquer recurrences
04/26/2024

page 2

How many operations are performed in merge-sort? We can determine
the number of operations by developing a recurrence relation. The
number of operations during any particular call to merge-sort on an
input array of length n requires n — 1 operations to merge the two sub-
arrays since we need to compare the leading (lowest) remaining values
of each sub-array, comparing them with the current lowest value in the
merged array, incurring at most # — 1 comparisons - we don’t need to
do a comparison for the last remaining value. Note that no compar-
isons are needed when we have a single value (n = 1). Since we need
to call merge-sort on both sub-arrays, then the number of operations
needed to sort an array of length 7 is

T(n) =2T(n/2)+n—1. (1)

Example 2:
Use the expand-and-pray method to verify the number of operations
of merge-sort is O(nlogn).
Solution:
We can write out the first few terms of the recurrence relation in
Equation 1 and try to see a pattern:

=nlogn — (21°g" —1)
=nlogn—n+1

The detailed number of operations is T(n) = nlogn —n +1,

which is O(nlogn).

Why is the upper bound of the sum
logn —1?

It takes logn times to break up the array
of length 7 in half into subarrays of length
1 (assuming the base of the log is 2). Our
sum starts at i = 0, so will get logn terms
in the summation with an upper bound of
logn — 1.

~—~—~

(n—1)+
(n—1)+
= (n—1)+ (n1—2)+47 ()
= (-1 +m-2)+4((5-1)+27 (%))
= (1—1)+(n—2)+ (n—4) +87 ()
:(n—1)+(n—z)+(n—4)+---+(n—zi*1)+zir(%)
= (n=1)+ (1 =2) + (n—4) +-- -+ (n— 29771} 2B (1)
logn—1
Sy
logn—1 logn—1
= Y n- Y 2
i=0 i=0

Lecture 10F

Divide-and-conquer recurrences
04/26/2024

page 3

The expand-and-pray method worked fine, but it’s a bit tricky when
the recurrence relation is more complicated. Luckily, there is a more
formal method for solving recurrences of this type. We call these types
of recurrences divide-and-conquer recurrences, since we are "dividing"
the problem into a few subproblems, "conquering" those subproblems,
and then solving the current problem using the solution to the sub-
problems.

1 Tree method for divide-and-conquer recurrences

Consider a recurrence relation of the form
n
flr)=a-f(3)+cn 2)

where n = bf forsome k € Zt,a > 1,b>1,be Z,¢c>0,d >0
and a,c¢,d € R. We can characterize the complexity of f(n) for various
cases:

O(n%) ifa < b?

f(n)=1{ O(n'logn) ifa="b"

O(n'& %) ifa > b
Before we can apply the theorem, it’s important to be able to say in
words what all the terms in Equation 2 mean:

* g: number of subproblems created during the recursive step,
¢ b: factor by which problem shrinks in the recursive steps,

* ¢, d: characterizes extra work performed outside of recursive func-
tion call.

In other words, divide-and-conquer algorithms divide a problem of
size n into a subproblems, each of which has a size of n/b. Let’s do a
few examples to practice applying this method.

Example 3:
Use the Tree Method to determine the complexity of merge-sort.

Solution:
Matching coefficients in Equation 1 with Equation 2 gives a = 2,

b=2,d=1.Since a = b?, then T(n) = O(nlogn).

Master Theorem versus Tree Method?

In textbooks, this is often known as the Master
Theorem for solving divide-and-conquer re-
currence relations, which can be proved by
induction. However, the use of the word "mas-
ter" can have negative connotations, so we
will call this method the Tree Method. In fact,
there exists a more general method, proved
by Akra & Bazzi in 1996.

Lecture 10F

Divide-and-conquer recurrences
04/26/2024

page 4

Example 4:

Develop a recurrence relation for the binary search algorithm, de-
scribed in Algorithm 1 and apply the Tree Method to determine the
number of operations executed in binary search.

Solution:
On each entry to the function, the binary search algorithm makes

a single recursive function call, depending on the value of the
middle index m, x and a (either Lines 9 or 11 are executed, but
never both). Each of these divides the problem into half. There
are four operations: one to retrieve the length of the array, another
to compute the middle index, a comparison with the requested
value, and a final one to determine whether we need to search
the lower /upper half of the array. We'll just use a constant c to
represent these operations.

T(n)=Tn/2)+c.

Since only a single operation is performed in the n = 0 case, then
T(0) = 1. Again, the actual value of the constant doesn’t really
matter (i.e. if you have 0, 1 or even 2 operations), as long as
it is independent of n. Using the Tree method, we identify the
constants asa =1b=2and d =0, so T(n) = O(logn).

binary_search(a, x)

input: sorted array a, value x
output: boolean as to whether a contains the value x

1 n <+ length(a)

2 ifn==0

3 return False

4 else

5 m < n/ /2 # use integer division to get middle index

6 if a[m] ==

7 return True

8 else if a[m] < x

9 return binary_search(a[m : n], x)
10 else
11 return binary_search(a[0 : m], x)

Four operations?

Depending on how you write the code, you
might have a few more or a few less opera-
tions, so we'll just say that we take ¢ (where
¢ is some constant) operations on each re-
cursive call, before dividing the problem and
making subsequent recursive calls.

Algorithm 1: Binary search algorithm to
determine if an array 4 contains a value
x (returns True or False)

Lecture 10F

Divide-and-conquer recurrences
04/26/2024

page 5

2 Derivation of the Tree method

Let’s derive the Tree method! You'll also see why it’s called the Tree
method. Recall we're working with divide-and-conquer recurrences of
the form:

f(n):a-f(%)—i-c-nd

where n = bf forsome k € Zt,a > 1,b>1,be Z,¢c>0,d >0
and a,c,d € R. Recall that a refers to the number of subproblems
created on each recursive step, b is the fraction by which the problem
size decreases on each recursive function call, and n? characterizes the
amount of work done (in the recursive step) separate from the recur-
sive function call.

Consider drawing a stack diagram for the recursive function calls. This
will look like a tree, in which each internal vertex has a children. Let k
represent the number of levels we have traversed down the tree.

Example 5:
(a) How many vertices are there at level k?

(b) What is the size of the problem at level k?

(c) How much work is done within a single vertex of the tree at
level k?

(d) How much work is done at level k?

(e) At what level will the original array of length n have been bro-
ken up into arrays of length 1?

(f) How much total work is done?

(g) Simplify your expression for part (f) for the case when n gets
really really big. Do this for three cases: (i) a < b, (i) a = b and
(iil) @ > b,

Solution:
(@) a*

(b) n/b*
(c) (n/b")"
(d) ak(n/b*)4 = n(a/b4)k

(e) log,n

Lecture 10F .. page 6
Divide-and-conquer recurrences
04/26/2024

(f) Adding up the work done in every leaf gives:

log, n log, n
2 (a/bd)knd _ nd 2 (ﬂ/bd)k
k=0 k=0

(g) This looks like a geometric series with r = a/b?. Recall our
general formula for a geometric series (for r # 1), is

N _1_7,N+1

k=

k;g 1—r

Here, N = log,n. When r < 1 and n gets really really big,
the summation is equal to 1/(1 — r). Therefore, for a < b?, we
have 1/(1 —a/ bd) = b%/1 — b?. But don’t forget the n? in front,
which is actually the dominant term in our final expression, so
fora < b4, (i) f(n) = O(n?). When r = 1 (ii), then the summation
is equal to log, n + 1, and remembering the n in front, we have
f(n) = O(n?log, n). For the last case, a > b, we have

nt 71 _ (b%>logbn = (nd (a)logbn) = O(n'°81),

b

To prove that last step, recall that x¥ = e/1°8%, Letting x = (a/b%),
we then have ndelogxlogn/logh _ ,(loga—dlogb)logn/logb+dlogn _
elogalogn/logh _ logn(log,a) — ,log,a

	Tree method for divide-and-conquer recurrences
	Derivation of the Tree method

