
Asymptotics
Lecture 9M page 1

04/15/2024 Philip’s notes

Learning objectives:
2 analyze how many operations are performed in simple algorithms

2 characterize algorithm running time complexity using big-O notation

1 Stacking blocks

Say I give you a bunch of length 1 blocks (each with a mass of 1 kg)
and ask you to stack them on the edge of the table. Can you think
of a stacking sequence such that the projection of the top block onto
the plane of the table will be entirely off the table? See Figure 1 for a
description of what we are trying to achieve. Can you do this by only
stacking one block per level?

. . .

block n

block n− 1

block 2

block 1

Figure 1: Stacking blocks off the
edge of the table.

1.1 Optimal solution

In order for the stack of blocks to be stable (not fall off the table), we
need the center of mass of all the blocks to lie above the bottom block.
If we just have a single block, then we can stick it out by at most one
half the length without falling over (see Figure 2): h1 = 1

2 . If there
are two blocks, then we can’t stick out the bottom one by one half the
length, because the center of mass of the top two blocks combined is
a little further to the right. Say we stick out the bottom block by h2.
To maximize the overhang, we want the center of mass of the top two
blocks to lie exactly at the edge of the table. Using the edge of the
table as our origin, then

x

block 1

h1 = 1
2

Figure 2: Maximum overhang
with a single block.

0× (1 + 1)︸ ︷︷ ︸
mass of two blocks

= h2 × 1 +
(

h2 −
1
2

)
× 1.

Solving for h2 gives h2 = 1
4 . Okay, let’s try with three blocks. We

retain the configuration of the top two blocks (since this maximizes
the overhang of those blocks) and need to figure out how much to
stick out the bottom block, which we will denote as h3. Again taking
the origin as the edge of the table and letting the center of mass of the
three blocks lie exactly at the edge of the table gives

0× (1 + 1 + 1)︸ ︷︷ ︸
mass of three blocks

= h3 × 1 + (h3 − h2)× 1

x

block 2

block 1

h2 = 1
4

h1 = 1
2

Figure 3: Maximum overhang
with two blocks.

Now, solving for h3 gives h3 = h2/2. See a pattern? In order for
the center of mass to lie exactly on the edge of the table, the bottom
block must stick out half the amount that the block above it sticks out
(relative to this bottom block). So what’s the total overhang of the top

Asymptotics
Lecture 9M page 2

04/15/2024

block? Well, we can just add up all the overhangs:

h1 + h2 + h3 =
1
2
+

(
1
2
× 1

2

)
+

(
1
2
× 1

2
× 1

2

)
= 0.875.

We’re getting close! We need this to be greater than 1 (a full block
hangs over the edge). Do you see a pattern? In fact, the configuration
for block n that maximizes the overhang (will still being stable) is hn =

hn−1/2. Then the total overhang is:

total overhang of top block =
1
2

n

∑
i=1

1
i

. (1)

So you only need n = 4 blocks to hang the top block entirely over the
edge of the table. To infinity and beyond!

In fact, this sum, goes to ∞ as n → ∞, so
you can achieve any distance off the table
with this method.1.2 A more detailed solution

It’s possible to approximate the solution for the maximum overhang
by integrating Equation 1 and bounding it with a few terms in the
sequence:

total overhang of top block =
1
2

ln(n) +
1
2

γ +
1

4n
+

1
24n2 +

δ(n)
240n4

where γ ≈ 0.577215664 is Euler’s constant and δ(n) is some function
that is between 0 and 1 for all nSo what does this mean? Well, as n
gets big, the dominant term is 1

2 ln(n). All other terms get really really
small. Does it matter that there’s a 1

2 in front? Not really. Theoretically,
we can achieve any distance off the table with enough blocks. How-
ever, the maximum overhang grows with the dominant terms, which
is ln(n) which is really slow, so you would need a lot of blocks! This
leads into our discussion about asymptotic notation, which is a way to
characterize function growth.

2 Estimating function growth

You may have seen something called "big-O" notation in CS 145/150.
If not, that’s okay, we’ll formally define it here.

Definition 1. Given functions f , g which map x from R → R, then f is
O(g) if

lim
x→∞

∣∣∣∣ f (x)
g(x))

∣∣∣∣ < ∞. (2)

Another way to think about this is that f grows at the same rate, or slower
than g, when we ignore constant factors.

If you’re not familiar with limits, the following definition of big-O
might be more intuitive.

Asymptotics
Lecture 9M page 3

04/15/2024

Definition 2. Given f , g : R → R, we say that f (x) is O(g(x)) if-and-
only-if there exists constants c > 0 and k such that | f (x)| ≤ c · |g(x)| for
all x ≥ k. Mathematically,

f (x) ∈ O(g(x)) ⇐⇒ ∃c > 0, ∃k : | f (x)| ≤ c · |g(x)| ∀x ≥ k. (3)

Note that the role of k is because we only want to consider problems
with large input sizes. The constant c is because we only care about
the growth of f up to constant factors. Our job is then to find constants
c and k that satisfy this definition.

Example 1:
Let f (x) = x and g(x) = 2x2. Prove that f (x) is O(g(x)).

Solution:
We just need to check Definition 1. Computing the limit gives

lim
x→∞

x
2x2 = 0 < ∞, (4)

thus verifying that f (x) is O(g(x)). In this example, any c > 2
would work to satisfy Definition 2.

One of the difficulties with big-O notation is the concept of "constant
factors." Is 100x2 = O(x2)? Yes, because the limit of f /g as x → ∞
is 100, which is finite. Is x2 = O(1000000000x)? No, because even
though 1000000000 is really really big, the limit of f /g as x → ∞ is ∞.

Can I do this? f (x) ≥ O(g(x))

No!! this is not correct notation. You can
say f (x) is O(g(x)) but relational operators
don’t mean much in the context of big-O no-
tation.

Example 2:
Determine whether the following are true or false.

(a) is 106x = O(x2)?

(b) is x10 = O(ex)?

(c) is 4x = O(2x)?

(d) is 10 = O(1)?

Solution:
(a) Yes, 106x is O(x2) because the limit of f /g = 0 as x → ∞.

(b) Yes, x10 is O(ex) because the limit of f /g = 0 as x → ∞ (you
can prove this with l’Hôpital’s rule).

(c) No, 4x is not O(2x) because the limit of f /g = ∞ as x → ∞.

(d) Yes, 10 is O(1). In fact, any constant is O(1).

https://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule

Asymptotics
Lecture 9M page 4

04/15/2024

3 Searching algorithms

Let’s practice what we’ve learned with summations and asymptotic
notation with some algorithms. For example, take the pseudocode for
linear search in Algorithm 1. See if you can do a detailed worst-case
analysis of the run-time of this algorithm.

linearSearch(v, x)

input: value v and array x
output: index of v in x

1 n← length(x)
2 for i = 1, 2, . . . , n
3 if x[i] == v
4 return i
5 return −1

Algorithm 1: Linear Search.

More efficient solution?

A more efficient method for searching for a
value in an array is binary search. The idea
is to perform the linear search algorithm on
two arrays: one from index 1 to n/2 and an-
other from n/2 + 1 to n. If you keep do-
ing this recursively, then the number of times
you need to break up the array into halves
is equal to log2(x). Therefore, the running
time for binary search is O(log(x)).

Example 3:
What is the worst-case running time of the linear search algorithm
(Algorithm 1)? First do a detailed calculation and then express your
result with big-O notation.

Solution:
We need one operation to compute the length of the array and
one to return the index. In the worst case, the body of the for-
loop is executed n times. Within this loop we have one operation
to increase the counter i, another one to check if we are still in
the bounds of the loop, one operation to retrieve the ith value in
x, and another to compare it to v. This means 4 operations are
performed within the loop, for a total of 4n executions. We also
need to include the initialization of the counter i (setting i = 1 at
the start of the loop). Therefore we have 4n + 3 operations in the
worst case. The running time of this algorithm is O(n).

Although we did a detailed analysis here, we generally don’t count op-
erations like checking the bounds of the loop, incrementing counters,
etc. They merely add constant factors which are really small com-
pared to the terms that depend on the size of our inputs n. It’s usually
a good idea to keep track of these when you do your initial analysis,
because you don’t want to mistake some steps as incurring a constant
number of operations, when they really depend on n. However, the
ultimate goal here is to get a big-O bound on the number of opera-
tions performed by the algorithm, so it’s okay if your constant factors

https://en.wikipedia.org/wiki/Binary_search_algorithm

Asymptotics
Lecture 9M page 5

04/15/2024

are different than the solution above.

4 Other ways to characterize complexity (optional)

There are other ways to characterize function growth, which can be
useful in computer science. You do not need to know these for this
class! I’m simply including them here in case you are interested and
come across them in the future.

name symbol notation definition example

tilde ∼ f (x) ∼ g(x) lim
x→∞

f (x)
g(x) = 1 x2 + x + 10 ∼ x2 + 5x

little-o o f (x) = o(g(x)) lim
x→∞

∣∣∣ f (x)
g(x)

∣∣∣ = 0 x
ln(x) = o(x)

big-O O f (x) = O(g(x)) lim
x→∞

∣∣∣ f (x)
g(x)

∣∣∣ < ∞ x2 = O(10x2)

little-omega ω f (x) = ω(g(x)) lim
x→∞

∣∣∣ f (x)
g(x)

∣∣∣ = ∞ x2 = ω(x)

big-omega Ω f (x) = Ω(g(x)) lim
x→∞

∣∣∣ f (x)
g(x)

∣∣∣ > 0 2x = Ω(x2)

theta Θ f (x) = Θ(g(x)) lim
x→∞

∣∣∣ f (x)
g(x)

∣∣∣ > 0 and < ∞ x2 = Θ(x2)

	Stacking blocks
	Optimal solution
	A more detailed solution

	Estimating function growth
	Searching algorithms
	Other ways to characterize complexity (optional)

