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Learning objectives:
2 simplify summations into nicer expressions using the perturbation method,

2 analyze how many operations are performed in some simple algorithms.

1 Methods for computing sums

Consider the following example.

Example 1:
Say I told you that I will give you either a million dollars today, or
$50, 000 every year for the rest of your life. Which would you pick?
You may assume a fixed annual interest rate of p = 8%.

Solution:
We can compare the two options by calculating the present value of
both options - how much is each option currently worth? Clearly,
the one million dollar option is worth one million dollars today.
But how much is $50, 000 every year for the rest of your life worth
today? Well, $50, 000 in 1 year is worth $50, 000/(1 + p) today.
Similarly, $50, 000 in two years is worth $50, 000/(1 + p)2 today.
The total value today is the sum of the current value of these
yearly $50, 000 payments after n years is:

present value = $50, 000+
$50, 000

1 + p
+

$50, 000
(1 + p)2 + · · · =

n

∑
i=0

$50, 000
(1 + p)i .

Okay, well to completely solve this, we need a way to compute
this sum.

1.1 Perturbation method

The last example involved a sum of the form

n

∑
i=0

ri = 1 + r + r2 + r3 + · · ·+ rn (1)

which is called a geometric series. Convince yourself that our formula
for the present value of an annuity is in this form with r = 1

1+p . Note
that since p > 0, then r < 1.

To compute Equation 1 we can use the perturbation method, which
involves "perturbing" it and seeing if we can observe any interesting
structure. Let’s perturb Equation 1 by multiplying it by r and subtract-



Summations
Lecture 8W page 2

04/10/2024

ing the result from Equation 1:

S = 1 + r + r2 + r3 + · · ·+ rn

−rS = − r− r2 − r3 − · · · − rn − rn+1.

When doing the subtraction, a lot of terms cancel, and we are left with

S− rS = 1− rn+1 → S =
n

∑
i=0

ri =
1− rn+1

1− r
. (2)

Say you live to n = 100 years and the interest rate (which you lock
in at year 0) is p = 0.08. Then, the present value of the annuity (by
plugging into Equation 2) is Take the one million dollars!

present value = $50, 000×
1−

(
1

1.08

)101(
1− 1

1.08

) ≈ $674, 693.

Now, what happens as n → ∞ (i.e. you live forever)? Under the
assumption that |r| < 1 and taking the limit as n → ∞ in Equation 2

gives

lim
n→∞

1− rn+1

1− r
=

1
1− r

. (3)

|r| < 1?

This assumption is very important because
it means that rn+1 → 0 as n→ ∞.

1.2 Derivative method (optional)

This section can be skipped! I really just want to provide you with an-
other method for computing sums in case you’re interested, however,
I will not ask you to compute any sums that require this method. If
you are interested, consider the following sum:

n

∑
i=0

iri = r + 2r2 + 3r3 + · · ·+ nrn. (4)

This looks a lot like a geometric series, but the factors in front of each
terms messes everything up. However, if you take the derivative of
Equation 2 with respect to r. Then you can recover something that looks
like Equation 4:

d
dr

n

∑
i=0

ri =
d
dr

(1+ r+ r2 + r3 + · · ·+ rn) = 1+ 2r+ 3r2 + · · ·+nrn−1 =
d
dr

(
1− rn+1

1− r

)
=

1− (n + 1)rn + nrn+1

(1− r)2 .

We can multiply this result by r to recover the sum in Equation 4:

n

∑
i=0

iri = r + 2r2 + 3r3 + · · ·+ nrn = r
(

1− (n + 1)rn + nrn+1

(1− r)2

)
.
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2 Double sums

Computing sums is useful if we want to count how many operations
are performed in an algorithm, which is particularly important if you
are estimating the run-time of your algorithm. Consider the follow-
ing algorithm for calculating the total number of edges in a graph
G = (V, E) from the adjacency matrix A.

countEdges

input: adjacency matrix A for graph G = (V, E)
output: number of edges |E|

1 s← 0
2 for i = 1→ |V|
3 for j = 1→ i
4 s← s + ai,j

5 return s

Algorithm 1: Algorithm for calculating
the number of edges in a graph from its
adjacency matrix.

Example 2:
How many operations are performed in Algorithm 1?

Solution:
We have a single operation on Line 1 when we initialize s. We
also have a single addition being performed on Line 4 so we need
to count how many times this line gets hit. The outer loop gets
executed |V| times, but the inner loop gets executed i times. Ex-
panding this gives

number of operations = 1 +
|V|

∑
i=1

i

∑
j=1

1.

Note that the inner sum is just i× 1 since the thing we are sum-
ming doesn’t depend on j. We are therefore computing

|V|

∑
i=1

i = 1 + 2 + · · ·+ |V| = |V|(|V|+ 1)
2

.

The total number of operations (including the one on Line 1) is
then 1 + |V|(|V|+1)

2 .

Arithmetic series?

See if you can get this result using the per-
turbation method!

Now if |V| is really big, then we don’t really care about the +1’s or
the /2. We care more about the |V|2 part, which will lead into our
discussion about asymptotic notation (soon).
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3 Matrix multiplication

In your electives (and in real life), you will very often need to write
code that manipulates matrices. Though it is very unlikely that you When will I need this?

You will often need handle matrices in
courses such as Computer Graphics, Ma-
chine Learning, Computer Vision and many
many more! Pretty much any time you have
a set of equations and unknowns, or need to
transform vectors.

will need to write your own matrix-multiplication function (because
somebody else likely wrote a very optimized version), you should still
be able to analyze the run-time complexity of the following algorithms.

Given a matrix A ∈ Rm×n (that is, a real m× n matrix), and a vector
x⃗ ∈ Rn (that is, an n-dimensional vector), then we can compute the
m-dimensional vector b⃗ = Ax⃗ by multiplying every row of A with x⃗ to
form the entries of b⃗. This procedure is outlined in Algorithm 2.

matrixVectorMultiplication

input: m× n matrix A and n-dimensional vector x⃗
output: m-dimensional vector b⃗ = Ax⃗.

1 b⃗← 0⃗
2 for i = 1→ m
3 for j = 1→ n
4 bi = bi + ai,j × xj

5 return b⃗

Algorithm 2: Matrix-vector multiplica-
tion.

Example 3:
How many operations are performed in the matrix-vector multipli-
cation procedure of Algorithm 2?

Solution:
First, Line 1 incurs m operators to assign zero to every element
of b⃗. Next, there are two loops to consider, one ranging from 1 to
m, the other ranging from 1 to n. There are two operations (one
addition and one multiplication) being performed on Line 4 in
Algorithm 2, which gives 2mn + m operations in total.

In reality, you probably don’t care about the 2 in front of the mn, nor
do you care about the extra m from initializing b⃗. It’s more important
to consider the fact that we have two loops, which gives roughly mn
operations. We will consider this type of asymptotic analysis soon.
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