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04/03/2024 Philip’s notes

Learning objectives:
2 Classify a given function as either surjective, injective or bijective,

2 Count infinite sets.

We’re going to start talking about functions today, which will lead into
our discussion about counting. Before doing so, think about the fol-
lowing problem, which was famously proved in 1936 by Alan Turing.

Terminating programs

For example, the program

print "Hello world!"

terminates, but the program

while (True) print "Hello world!"

does not terminate.

Example 1:
Given an arbitrary computer program p with an input x: is it possi-
ble to determine whether p will terminate if given the input x? This
is known as the Halting Problem.

Solution:
Proof. We use a proof by contradiction. Suppose a program h(p, x)
succesfully determines whether a program p will halt when given
an input x. Let us define a program k(p) which takes the output
of h(p, p) (a program ultimately gets encoded as a sequence of
bits so we can pass those bits as an input to h) and then halts
if h(p, p) returns runs forever or runs forever if h(p, p) returns
halts. In other words, k(p) does the opposite of what h(p, p)
does. Well k is just a program like any other, so we can pass it
into itself! We have two cases to consider. In the first case, sup-
pose p actually halts, in which case h says it halts, and k then
runs forever. However, passing k into itself will call h(k, k), which
returns runs forever, so k will halt. In the second case, suppose
p runs forever, in which case h says it runs forever, and k then
halts. However, passing k into itself will call h(k, k), which returns
halts, so k will run forever. In both of the above cases, we have
a contradiction because k would need to run forever and halt,
meaning there is no way h could return the correct result.

Which of these are functions?

x

y

x

y

(a) a function (b) not a function

The technique used in the motivating example is called diagonalization,
which can also be used to prove that the set of real numbers is what
is called uncountably infinite. Before being able to count infinities (I
know it sounds weird), we need to understand a few properties about
functions.

1 Functions: surjective, injective, bijective

You’ve seen functions before, probably something like y = x2. In
particular, we have taken some input domain and mapped it some other
domain (called the codomain), using a specific relation. Let’s now define
all of these terms.

https://en.wikipedia.org/wiki/Halting_problem
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Definition 1. A function f is a map from the sets A to B such that every
element of A maps to a unique element of B. Mathematically, the function f
is represented as f : A → B, which describes that f maps elements from A to
B:

∀a ∈ A, ∃b ∈ B such that f (a) = b︸ ︷︷ ︸
image of a

.

The set A is referred to as the domain and the set B is referred to as the
codomain.

codomain versus range?

Note that the range and the codomain are
not necessarily equal! The range is a sub-
set of the codomain, since a function may
not map a particular input to a value in the
codomain. For example, consider the func-
tion f : Z → Z with f (x) = x2. The do-
main is Z, the codomain is also Z, but the
range is {0, 1, 4, 9, 16, . . . }, which does not
include every element in the codomain Z.

Given a function f and an input a, we say the image of a is f (a) = b.
The set of all images of (for every possible a ∈ A) is called the range
of f . We also say that the preimage of b is a: f−1(b) = a.

It is often helpful to visualize how a function maps values from the
domain to its codomain using a diagram.

a1

a2

a3

f (a2)

f (a1)

f (a3)

domain: A codomain: B

range: { f (a1), f (a2), f (a3)}

Example 2:
Which of the following statements is true?

(a) Every relation on A can be expressed as a function f : A → A.

(b) Every function f : A → A can be expressed as a relation on A.

Solution:
Only (b) is True. For a set A, a function f : A → A is a subset
of A × A. Furthermore, a relation on A is all pairs (a, a) such
that f (a) = a. The reason (a) is False is because we cannot nec-
essarily find a function that represents a particular relation. For
example, consider the relation R on A = {0, 1} which is just the
Cartesian product of the elements of A: R = {0, 1} × {0, 1} =

{(0, 0), (0, 1), (1, 0), (1, 1)}. We cannot find a function that rep-
resents this relation because elements of A map to more than one
value in R.
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But g(1) = a and g(3) = a?

This is okay because in order for g to be
a function, we only require that each input
maps to a single output.

Example 3:
Identify the domain, codomain and range of the following func-
tions:

(a) f : Z → Z defined by f (n) = 2n.

(b) g : {1, 2, 3} → {a, b, c} defined by g(1) = c, g(2) = a and g(3) =
a.

Solution:
(a) The domain and codomain are the set of integers. The range

is the set of even numbers.

(b) The domain is the set {1, 2, 3}. The codomain is the set
{a, b, c}. The range is {a, c}.

1.1 Properties of functions

In the last example, we saw that g(1) = a and g(2) = a. In other
words, g mapped two different inputs to the same output. Functions
that do not do this are called injective. More specifically, injective func-
tions are functions in which at most one element of the domain maps
to a particular element of the codomain. These are also appropriately
called one-to-one functions.

injective
a

b

1

2

3

not injective
a

b

c

1

2

surjective
a

b

c

1

2

not surjective
a

b

1

2

3

If every element of the codomain is the image of some element in
the domain, then we say that the function is surjective, which is also
referred to as an onto function. A surjective function is one in which
the range and codomain are identical.

Example 4:
Which of the following functions are surjective? Take R+ as the set
of positive real numbers that includes 0.

(a) f : R → R defined by f (x) = x2.

(b) f : R → R+ defined by f (x) = x2.

Solution:
(a) not surjective because the range is R+ but the codomain is R.

(b) surjective because both the range and codomain are R+.

Functions which are both injective and surjective are called bijective.
These propeties of functions are summarized below. Let f : A → B be
a function. Then f is:
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• injective if for every x, y ∈ A, x ̸= y means f (x) ̸= f (y).

• surjective if for every b ∈ B, there is an a ∈ A with f (a) = b.

• bijective if f is both injective and surjective.
sur?

If you speak French, you may know the word
sur which means "on top of", similar to how
we say surjective functions are onto.

Example 5:
Let S be the set of all Middlebury students. Determine if the follow-
ing functions are injective, surjective, bijective or none.

(a) Let E be the set of all Middlebury email addresses.
Define a function f : S → E such that f (x) is x’s email address.

(b) Let M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
Define a function g : S → M such that f (x) is x’s birth month.

(c) Let A = 0, 1, 2, . . . .
Define a function h : S → A such that f (x) is x’s age in years.

Solution:
(a) injective because no two people have the same email address.

(b) surjective because some student is born in every month.

(c) not surjective because no students are 1000 years old and not
injective because two students can have the same age.
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2 Counting infinite sets (optional)

This might sound weird, but we can actually "count infinities." The car-
dinality of the natural numbers is |N| = ∞. A valid question is: what
is the cardinality of the set of even numbers |E|? Is it the same infinity?

For sets A and B, the cardinalities of both sets are the same if we can
find a bijective function that maps every element of a to an element of
B. Sets which have the same cardinality as the set of natural numbers
are called countably infinite. In the case of the even numbers, we
can define a bijective function f : N → E with f (x) = 2x. Therefore,
|E| = |N| and E is countably infinite.

Example 6:
Consider the set S = {x ∈ Z : x > 10}. Is |S| = |N|?

Solution:
We can determine if S is countably infinite by finding a bijective
function from N to S. We can do this with the function f : N → S
such that f (x) = x + 10.

Sets which are larger than the set of natural numbers are called
uncountably infinite. To show that a set is uncountably infinite, we
just need to show that we cannot find a bijective function from N

to the particular set. A famous set that is uncountably is the set How do I show it is uncountably infinite?

We need to show that there does not exist a
bijective function from N to the set in ques-
tion. Remember that a proof by contradic-
tion is useful to show that something does
not exist. Start by assuming that a bijective
function does exist, and then show we ulti-
mately end up with a contradiction.

of real numbers R. We can show that R is uncountably infinite by
using a diagonalization argument similar to how we proved that it is
impossible to write a program to determine if a program halts or runs
forever.
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Example 7:
Prove that the set of real numbers is uncountably infinite.

Solution:
Proof. We use a proof by contradiction. Suppose R is countable.
Then any subset of R is also countable. Consider the set of real
numbers R1 between 0 and 1 and note that R1 ⊂ R.

Assume there is a bijective function f : N → R. Let us rep-
resent the ith real number ri by 0.di1di2di3 . . . where dij is the jth

decimal place of the ith real number. For example,

r1 = 0.d11d12d13 . . .

r2 = 0.d21d22d23 . . .

r3 = 0.d31d32d33 . . .
...

where dij ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Note that the number 1
2 would

be represented as 0.500000 . . . (the 0’s never end). Now form a
new real number (which should be in R1) with the following rule:

r = 0.d1d2d3d4 . . . dk =

{
4 if dkk ̸= 4
5 if dkk = 4.

For example, starting with

r1 = 0.15434 . . .

r2 = 0.41198 . . .

r3 = 0.97422 . . .
...

we would get the number r = 0.445 . . . . However, note that r is
not on the list! Every number in R1 has a unique expansion, but
r cannot be in R1 because r differs from any possible ri in the ith

decimal place. Therefore, it is not possible to represent all real
numbers between 0 and 1, so we have a contradiction.

This is known as diagonalization because of the way we change the
diagonal entries of the decimal places. It was first used to prove that
the real numbers are uncountably infinite in 1891 by Georg Cantor.


	Functions: surjective, injective, bijective
	Properties of functions

	Counting infinite sets (optional)

