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Learning objectives:
2 describe (in words) what a relation is,

2 describe three properties of relations (reflexive, symmetric, transitive) and how this gives us equiv-
alence relations,

2 describe how equivalence classes partition a set,

2 prove whether (or not) a relation is an equivalence relation.

The ultimate goal of today’s lecture is to divide a set into subsets,
using some mathematical notation. We may want to do this because we
only want to work with subsets that share a similar property. In par-
ticular, if we are writing an algorithm or proving something, it might
be easier to work with these subsets instead of the full set. Before we
do that, a little exercise.

3d printed cheetah

optimization of giraffe patterns

Example 1:
Suppose I give you a set of points Z in the plane (R2). Our goal,
is to partition the plane in such a way that the regions contain all
points of the plane closest to a particular point in Z. For exam-
ple, for a point z⃗i ∈ Z, the region Ri ⊂ R2 is defined such that
d(⃗zi, x⃗) ≤ d(⃗zj, x⃗), ∀x⃗ ∈ R2, ∀⃗zj ∈ Z, i ̸= j. Note the use of the
Euclidean distance d. For a bunch of random points on the board
(Z), see if you can draw the partitions of the board.

In case you’re interested, this creates what is called a Voronoi di-
agram, which shows up naturally in the patterns on giraffes, the
skeleton structure of dragonfly wings, creases in drying soil and
many more! Modern artists are also finding uses for Voronoi pat-
terns when creating 3d printed models (see the cheetah on the right).

We’ll come back to this at the end of the lecture. For now, consider
some simpler examples.

Example 2:
Let A be the set of all cities in the United States and let B be the set
of all states. The Cartesian product of A and B, denoted by A × B is
the set of pairs:

A × B = {(Montpelier, AK, Montpelier, ME, Montpelier, MA, . . . , Montpelier, VT,

Boston, AK, Boston, ME, Boston, MA, . . . , Boston, VT, . . . }.

Now, only a subset of this product correspond to the actual capital
cities paired with the appropriate states.

Consider a more mathematical example:

https://www.cgtrader.com/3d-print-models/miniatures/figurines/cheetah-voronoi-wireframe
https://philipclaude.gitlab.io/cs200f21/docs/L03-sets.pdf
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Example 3:
Consider the mod function, specifically mod(x, 4), ∀x ∈ Z. Note
how this function partitions Z into four distinct sets:

M0 = {. . . , −12, −8, −4, 0, 4, 8, 12, . . . }
M1 = {. . . , −11, −7, −3, 1, 5, 9, 13, . . . }
M2 = {. . . , −10, −6, −2, 2, 6, 10, 14, . . . }
M3 = {. . . , −9, −5, −1, 3, 7, 11, 15, . . . }

In other words, we’ve separated the set of integers Z into four sets,
depending on whether an integer has modulus of 0, 1, 2 or 3 with
the number 4. In general, the modulo n function will separate the
integers into n distinct sets.

Now, let’s describe how to characterize these subsets mathematically.

1 Relations

Cartesian product?

The Cartesian product of two sets A and B
is the set of ordered pairs of elements in A
with those in B:

A × B = {(a, b) | a ∈ A ∧ b ∈ B}.

The lecture on sets has more information
and examples on the Cartesian product.

Definition 1. Let A be a set. A relation R on A is a subset of A × A.

R ⊆ A × A

If (x, y) ∈ R, then we say xRy or x is related to y.

Example 4:
Let R1 be the relation {(x, y) | x < y}. Which of the following are
in R?

(a) (1, 2)

(b) (2, 1)

(c) (1, 1)

Solution:
(1, 2) ∈ R1 since 1 < 2, however, none of the others are in R1

because the order matters. If instead, we considered the relation
R2 = {(x, y) | x ≤ y} then option (c) is in R since 1 ≤ 1 so
(1, 1) ∈ R2.

When we considered (1, 1) ∈ R2 in the last example, this is actually a
special property of relations.

https://philipclaude.gitlab.io/cs200f21/docs/L03-sets.pdf
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2 Properties of relations

There are three properties of relations that we want to look at. Let A
be a set and R be a relation, R ⊆ A × A.

• reflexive: (a, a) ∈ R, or aRa, ∀a ∈ A (example: ≤).

• symmetric: if (a, b) ∈ R, then (b, a) ∈ R, ∀a, b ∈ A (example:
ab ≥ 1, ba ≥ 1).

• transitive: if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R, ∀a, b, c ∈
A. (example: < because a < b and b < c means a < c).

Now we can define equivalence relations.

Definition 2. An equivalence relation R on the set A is reflexive, sym-
metric and transitive.

How to show if something is an equiva-
lence relation?

To show a relation is an equivalence relation,
just check the three properties! If you want to
show that something is not an equivalence
relation, finding a counterexample is useful.

Example 5:
Let’s return to our modulus example. Instead of looking at the
special case of modulo 4, we’ll look at modulo m for any integer m.
The relation can be described by

R = {(a, b) | a ≡ b (mod m)}

Note that a ≡ b (mod m) means m divides a − b. Is R an equivalence
relation?

Solution:
To check if R is an equivalence relation, we need to check the
three properties.

• reflexive? a− a = 0 and m certainly divides 0. So R is reflexive.

• symemtric? if m divides a − b, then a − b = km, k ∈ Z. We
need to check if m divides b − a. b − a = −(a − b) = −km. So
R is symmetric.

• transitive? if m divides a − b and m divides b − c, then does
m divide a − c? If m divides a − b, then a − b = km, m ∈ Z.
If m divides b − c, then b − c = lm, l ∈ Z. Then a − c =

(a − b) + (b − c) = km + lm = (k + l)m. Since (k + l) ∈ Z, then
R is transitive.

Since we verified all three properties, then R is an equivalence
relation.

Equivalence classes for the relation n mod 4.

Z

M0 M1

M2 M3

Notice how an equivalence relation partitions a domain into equiv-
alence classes. If a pair (a, b) ∈ R, then the notation a ≡ b means
that a and b are in the same equivalence classes. The diagram on
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the right demonstrates how congruence modulo m partitions the set
of integers (Z) into m equivalence classes (for the special case when
m = 4). We can also go the other way around. Given a partition of
a set A = {Ai | i = 1, 2, . . . }, there exists an equivalence relation R
that has sets Ai, i = 1, 2, . . . as it’s equivalence classes. Remember the
giraffe patterns from the beginning of the lecture. Well, in that exam-
ple we partitioned the board (R2) into the different regions. Does this
partition define an equivalence relation?

Example 6:
Check whether the partition we found at the start of the lecture
defines an equivalence relation.

Solution:
In order to check if this is an equivalence relation, we need to
check the three properties.

reflexive? we need to check that (a, a) ∈ R, which is true since
a is in the same subset as itself!

symmetric? if (a, b) ∈ R, then is (b, a) ∈ R? This is also true
since this means that both a and b are in the same region.

transitive? if (a, b) ∈ R and (b, c) ∈ R, then is (a, c) ∈ R. In
other words, given that a and b are in the same region, and
b and c are in the same region, then are a and c in the same
region? This is also true, because all three are in the same
region!

So we’ve done a few examples to show if something is an equiva-
lence relation, but how do we show if something is not an equivalence
relation? The easiest method is to use a proof by counterexample.

Example 7:
Show that the relation R = {(a, b) ∈ Z × Z : a | b} is not an equiva-
lence relation.

Solution:
We can find an example to show that the relation is not symmet-
ric: 2 | 4 but 4 ∤ 2.
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Example 8:
Let S be the set of all people. Decide if the following is an equiva-
lence relation or not, and explain why. If it is an equivalence rela-
tion, what are the equivalence classes?

(1) R ⊆ S × S, R = {(a, b) : a, b have same parents}.

(2) R ⊆ S × S, R = {(a, b) : a, b share a parent}.

Solution:
(1) It is an equivalence relation. The equivalence classes are the

groups of full siblings.

(2) It is not an equivalence relation because the transitive prop-
erty is not satisfied. This can be verified with the following
family tree.

mom1

a

dad1

b

mom2

c

dad2
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