
Graph Searching
Lecture 6W page 1

03/27/2024 Philip’s notes

Learning objectives:
2 write pseudocode for breadth-first search (BFS) and depth-first search (DFS) algorithms,

2 build a spanning tree using a DFS and BFS,

2 build a minimum spanning tree using Prim’s algorithm,

2 apply BFS and DFS to some graph problems.
Did you know?

Some of the algorithms we will see today can
be used to get out of a maze. Specifically,
Trémaux’s algorithm is related to depth-first
search and guarantees that you will get out
of a maze (though it might not be the short-
est path).

Last lecture we introduced spanning trees and we proved that every
connected graph has a spanning tree. A natural question arises: how do
we compute spanning trees? Today, we’ll answer that question using the
breadth-first and depth-first search algorithms. We’ll also introduce a
special type of spanning tree called the minimum spanning tree. After
today’s lecture, think about how you might apply what you learn to
some problems in computer science. Can you apply your knowledge
to color a graph? Can you think of a way to create a web crawler?

Example 1:
Starting at the upper-left corner, find a path out through the maze
to exit in the bottom right corner. Describe the approach you used
and why you used it. Can you relate it to graph theory?

https://en.wikipedia.org/wiki/Maze_solving_algorithm


Graph Searching
Lecture 6W page 2

03/27/2024

1 Depth-first search (DFS)
How many checks are performed in DFS?

We need to visit every vertex once as well as
every edge attached to that vertex. If we are
given the adjacency matrix for G, then we
need about |V|2 checks since we need to
traverse every row of the adjacency matrix
to determine if a vertex neighbors the one
being visited. If we are given the adjacency
list for G, then we need about |V| checks.
However, if the number of edges attached to
a vertex is large, then this could be as high
as |V|2.

In order to build a spanning tree, we need to make sure of two things:

1. the spanning tree remains connected,

2. the spanning tree has no cycles.

One idea, then, for building a spanning tree, is to pick some arbitrary
vertex in a graph (which will be the root) and keep adding edges in-
cident to the last vertex added such that the above properties are still
satisfied. We can ensure that no cycles are created by also ensuring
that the edge we add is not incident to a vertex already existing in the
tree. More formally, Algorithm 1 describes these steps. This algorithm
is known as depth-first search because we are starting from a vertex
and traversing the graph by depth to form the spanning tree.

This algorithm is sometimes referred to as backtracking because the
algorithm returns to previous vertices when traversing the graph.

depthFirstSearch(G)

input: connected graph G = (VG, EG)

output: spanning tree T
1 u← arbitrary vertex in VG

2 T ← ({u}, ∅)

3 visit(u, G, T)

visit(u, G, T)

input: starting vertex u, connected graph G = (VG, EG),
current spanning tree T = (VT , ET)

output: updated spanning tree T = (VT , ET)

1 for v ∈ neighbors(u, G)

2 if v ∈ VT

3 continue
4 ET ← append({u, v})
5 VT ← append(v)
6 visit(v, G, T)

Algorithm 1: Depth-first search.



Graph Searching
Lecture 6W page 3

03/27/2024

Which order should be used to visit
adjacent vertices?

In the example on the left, we didn’t neces-
sarily go in alphabetical order, but supposed
the vertex-vertex adjacencies were stored
on some arbitrary order. In general, I’ll be
explicit about the order in which neighbors
should be visited.

Example 2:
Use depth-first search to find the spanning tree of the following
graph.

a

b

c

d

e

f

g

h

i j

k

Solution:
The spanning tree is shown below. Starting with e, the sequence
of steps taken to draw the spanning tree is shown in the different
levels of the figure on the right. Note that the resulting spanning
tree is dependent on the starting vertex as well as the order in
which the adjacencies are traversed.

a

b

c

d

e

f

g

h

i j

k

ab

c
d

e

f

g

h

i

j

k



Graph Searching
Lecture 6W page 4

03/27/2024

2 Breadth-first search (BFS)

Instead of backtracking to previous vertices, we can traverse a graph
by looking at every neighbor at the current level before proceeding to
the next level. This type of traversal is known as breadth-first search
(BFS). Similar to DFS, BFS adds edges to the tree as long as we haven’t
already added the opposite vertex of the edge to the tree. This algo-
rithm is described in Algorithm 2. BFS is useful if you want to find the
connected components of a graph or determine if a graph is bipartite.

breadthFirstSearch(G)

input: connected graph G = (VG, EG)

output: spanning tree T = (VT , ET)

1 u← arbitrary vertex in G
2 T ← ({u}, ∅)

3 L← {u} # unprocessed vertices
4 while L ̸= ∅
5 v← pop(L) # remove first vertex from L
6 for w ∈ neighbor(v, G)

7 if w ∈ L ∨ w ∈ VT

8 continue
9 L← L ∪ w
10 VT ← append(w)

11 ET ← append({v, w})

Algorithm 2: Breadth-first search.

How many checks are performed in BFS?

BFS performs about |V| checks since every
vertex is visited. It also explores the adja-
cencies of every vertex. Depending on the
degree of the graph, this could be as high as
|V|2. However, this is generally improved to
about |V| checks for low degrees.

Example 3:
Use breadth-first search to find the spanning tree of the following
graph starting at vertex e (see Rosen Chapter 11.4 Example 5).

a b c

d
e f

g

h
i

j

k

l

m



Graph Searching
Lecture 6W page 5

03/27/2024

Solution:
The steps in forming the tree are shown in the four levels below.
Note that each leave is completed before moving onto the next
level.

a

b

c

d

e

f

gh

i

j
k

l m

3 Minimum Spanning Trees (MST)

Figure 1: Minimum spanning
tree of random points in the
plane. Here’s a really nice demo.

We have seen a few methods for building spanning trees, but if the
graph has weights on its edges, we may want to compute a minimum
spanning tree.

Definition 1. A minimum spanning tree of an edge-weighted graph G is the
spanning tree of G with the smallest possible sum of edge weights.

We can apply our traversal algorithms to account for these edge
weights. The following algorithm (Algorithm 3) is known as Prim’s
algorithm for building a minimum spanning tree. The check on Line 6

(checking if a cycle is formed) can be done by checking if both vertices
on the edge e have already been added to the tree.

Example 4:
Build the minimum spanning tree of the following graph using
Prim’s algorithm.

4 2

46 8 43

7 1

2 3

5 4

365

https://en.wikipedia.org/wiki/Prim%27s_algorithm#/media/File:PrimAlgDemo.gif


Graph Searching
Lecture 6W page 6

03/27/2024

minimumSpanningTree(G, W)

input: graph G = (VG, EG) with weights W on the edges EG

output: minimum spanning tree T = (VT , ET)

1 EG ← sort(EG, WG) # sort edges by increasing weight
2 while |ET | < |VG| − 1 # property of trees
3 for e ∈ EG

4 if e ∈ ET ∨ (vertices of e) /∈ VT # maintain connectivity
5 continue
6 if adding e to T forms a cycle
7 continue
8 ET ← append(e)
9 VT ← append(vertices of e)
10 break # restart loop to find edge with min weight

Algorithm 3: Prim’s algorithm for find-
ing a minimum spanning tree.

Solution:
We can use Prim’s algorithm to generate the minimum spanning
tree. The resulting weight is: 1 + 3 + 2 + 4 + 3 + 4 + 3 + 2.

4 2

3

1

2 3

4

3

How many checks are performed in Prim’s
algorithm?

If you use an adjacency matrix or adjacency
list to represent the graph, then the algo-
rithm requires |E|2 or |V|2 checks since we
are checking every possible edge that we
can add next in the list (in the worst, case
|E| times).

There are other data structures, specifically
heaps, that you can use to improve perfor-
mance.


	Depth-first search (DFS)
	Breadth-first search (BFS)
	Minimum Spanning Trees (MST)

