Goals for today:

* 1. Write pseudocode for breadth-first search (BFS) and depth-first-search (DFS) algorithms,
2. Build a spanning tree using DFS and BFS,
3. Build a minimum spanning tree (MST) using Prim's algorithm.
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Depth-First Search ("backtracking").

Main idea: Keep traversing edges until you "hit a wall," then go back to parent.
— maintain a tree: connected and acyclic




Depth-First Search in pseudocode.

depthFirstSearch(G)

A

input: connected graph G = (Vg, Eg)
output: spanning tree T
1 u 4 arbitrary vertex in Vg

T + ({u},9)
3 visit(u, G, T)

visit(u, G, T)

input: starting vertex u, connected graph G = (Vg, Eg),
current spanning tree T = (Vr, ET)
output: updated spanning tree T = (Vr, E7)
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continue
Et < append({u,v})
Vr « append(v)
visit(v, G, T)
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Exercise 1: Build spanning tree of this graph using DFS.

e Start at vertex e.
e Visit neighboring vertices in alphabetical order. o
e List order of vertices visited.




Breadth-First Search ("flooding").

Main idea: Visit neighbors one "level"” at a time.
— maintain a tree: connected and acyclic




Depth-First Search in pseudocode.
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breadthFirstSearch(G)

input: connected graph G = (V, Eg)

output: spanning tree T = (Vr, E7)
u < arbitrary vertex in G
T+ ({u},9)
L+ {u} # unprocessed vertices
while L # @
v + pop(L) # remove first vertex from L
for w € neighbor(v, G)
ifwelLVweVr
continue
L4 LW kJ
Vr < append(w)
Et < append({v,w})
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Exercise 2: Build spanning tree of this graph using BFS.

e Start at vertexe.
e Visit neighboring vertices in alphabetical order.
e List order of vertices visited.
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Prim's algorithm for constructing a minimum spanning tree (MST).

Minimum spanning tree: Spanning tree of a graph with _twiniriwm 5w

°f——“*%“4$‘29“‘ .

Main idea: Add minimum weight edge that is (1) connected to current tree and (2)
does not form a cycle.
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