Goals for today:

* 1. Write pseudocode for breadth-first search (BFS) and depth-first-search (DFS) algorithms,
2. Build a spanning tree using DFS and BFS,
3. Build a minimum spanning tree (MST) using Prim's algorithm.

new maze| 5 I | free -

L) cAekC Xais woze Yo gregh® ©
Br:sf’c?aé?

| 3) how Y8 £ind Shogest Ptk .\M%k, m«,?

click on "game" in the row for today's class at go/cs200



Depth-First Search ("backtracking").

Main idea: Keep traversing edges until you "hit a wall," then go back to parent.
— maintain a tree: connected and acyclic




Depth-First Search in pseudocode.

depthFirstSearch(G)

A

input: connected graph G = (Vg, Eg)
output: spanning tree T
1 u 4 arbitrary vertex in Vg

T + ({u},9)
3 visit(u, G, T)

visit(u, G, T)

input: starting vertex u, connected graph G = (Vg, Eg),
current spanning tree T = (Vr, ET)
output: updated spanning tree T = (Vr, E7)

furi;:vEEn:;ghburs(u ,G) &’ ‘t‘\'o{' "JDM W&‘as

continue
Et < append({u,v})
Vr « append(v)
visit(v, G, T)

S
-




Exercise 1: Build spanning tree of this graph using DFS.

e Start at vertex e.
e Visit neighboring vertices in alphabetical order. o
e List order of vertices visited.




Breadth-First Search ("flooding").

Main idea: Visit neighbors one "level"” at a time.
— maintain a tree: connected and acyclic




Depth-First Search in pseudocode.

WO oo~ o L W N

TR
- O

breadthFirstSearch(G)

input: connected graph G = (V, Eg)

output: spanning tree T = (Vr, E7)
u < arbitrary vertex in G
T+ ({u},9)
L+ {u} # unprocessed vertices
while L # @
v + pop(L) # remove first vertex from L
for w € neighbor(v, G)
ifwelLVweVr
continue
L4 LW kJ
Vr < append(w)
Et < append({v,w})

ro5\




Exercise 2: Build spanning tree of this graph using BFS.

e Start at vertexe.
e Visit neighboring vertices in alphabetical order.
e List order of vertices visited.

10



Prim's algorithm for constructing a minimum spanning tree (MST).

Minimum spanning tree: Spanning tree of a graph with _twiniriwm 5w

°f——“*%“4$‘29“‘ .

Main idea: Add minimum weight edge that is (1) connected to current tree and (2)
does not form a cycle.

4,
6 (3) .

5

©Xe

5

11



