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Learning objectives:
2 describe properties of graphs: walks, paths, cycles

2 prove the number of edges of a tree is equal to the number of vertices - 1

2 prove that every graph has a spanning tree

2 build a spanning tree from an arbitrary connected graph

Trees are one of the most useful data structures in computer science.
They have applications to image segmentation, circuit design, feature
extraction, gene expression, computer games and computer-aided de-
sign. We will also see trees later in the course when we study recur-
rence relations and probability. The goal of this lecture is to introduce For more applications, see here.

you to various tree terminology and to prove certain properties about
trees. As usual, here’s a puzzle.

Example 1:
Suppose you are given eight coins. Seven of the coins have an equal
weight but one of them is lighter. You have a balance to weigh any
two sets of coins to determine which set is heaver (if any). What is
the minimum number of weighings you need to determine which
coin is lighter?

So many terms!

I know, but hopefully some of them are intu-
itive. At the end of this section, make sure
you understand the following terms:

• walk

• path

• connected

• cycle

• root node

• leaf node

1 Tree terminology

A tree is just a special type of graph. In order to understand what
"special" means, we need to make a few definitions.

Definition 1. A walk in a graph G = (V, E) is a sequence of vertices that
are connected by edges.

For example, in the graph of Figure 1, we might have a walk:

c − b − a − d − h − f − e.

We say that this walk is of length k = 6 because we traversed 6 edges
to get from the starting node to the end node. When the start and end
nodes are the same, we obtain a closed walk.

Definition 2. A closed walk is a walk which starts and ends at the same
vertex.

For example,

d − e − b − c − f − g − f − h − d.

is a closed walk of length k = 8.
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Figure 1: Example graph for
defining terms.

Definition 3. A path is a walk where all the vertices (or nodes) are different.

https://en.wikipedia.org/wiki/Minimum_spanning_tree
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For example, in Figure 1, a − d − e − b − c is a path, but a − d − e −
b − e − f is not a path.

Definition 4. A cycle is a closed walk of length greater than 2 in which all
the nodes are different. A graph that does not contain any cycles is called
acyclic.

In Figure 1, a − b − c − f − e − d − a and e − f − h − d − e are a few
examples of cycles.

Definition 5. Nodes u and v are said to be connected if there is a path from
u to v. A graph is said to be connected if every pair of nodes are connected.

If a graph G is not connected, then any connected subgraphs of G
are called connected components. Figure 2 is a graph with four connected
components. Finally, we can now define a tree!

H1 H2 H3

H4

Figure 2: A single graph G with four
connected components H1, H2, H3 and
H4. H2 and H4 contain cycles. H3 does
not contain a cycle. G is not a tree be-
cause it is not connected.

Definition 6. A connected and acyclic graph is called a tree.

Figure 3: Example of a tree.

The graph of Figure 3 is an example of a tree. A graph that is acyclic
but not connected, it is called a forest. A directed graph that is acyclic
and not necessarily connected is called a directed acyclic graph and
often abbreviated DAG.

A nice property of trees is that we can related the number of vertices
to the number of edges with the following lemma.

Lemma 1. A tree with n vertices has n − 1 edges.

Proof. We use a proof by induction on the number of vertices n. Let
the induction hypothesis be p(n) = there are n − 1 edges in an n-vertex
tree.

Base case: When there is a single vertex (n = 1), there are 0 edges, so
the induction hypothesis holds.

Inductive case: Assume p(n). That is, any n-vertex tree has n − 1
edges. We need to show that any (n + 1)-vertex tree has n-edges. Let
T be a tree that has n + 1 vertices. Let v be a leaf of T. Remove v from
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T to get a tree T′ with n vertices. By p(n), T′ has n − 1 edges. Now,
add v back in. We can add v anywhere we like. The key is that we
can only add a single edge to create a tree (otherwise there would be
cycle). After v has been added back in, then T has (n − 1) + 1 = n
edges.

By induction on the number of vertices in a tree, p(n) is true.
Why does v need to be a leaf?

Note: v needs to be a leaf of T to get a tree
T′, otherwise T′ would not be connected
and, hence, not a tree.

2 Rooted trees

By definition, the graph of Figure 3 is a tree, however, it doesn’t look
much like a real-life tree. If a tree has a designated root, that tree is
called a rooted tree. See Figure 4.

Definition 7. A rooted tree is a tree in which a single vertex is designated
as the root and every edge is directed away from the root.

Rooted trees are typically drawn in levels. A vertex connected lower
than another vertex is called a child. The connected vertex higher than
another vertex is called the parent. A leaf is a special kind of vertex
that has no children. Note that the degree of a leaf is 1.

root

ℓ1 ℓ2

ℓ3 ℓ4

u

Figure 4: Example of a rooted
tree with four leaves (labelled
ℓ1, ℓ2, ℓ3, ℓ4).

In Figure 4, the root is the parent of ℓ1, ℓ2 and u, whereas ℓ3 and ℓ4

are children of u. Nodes at the same level are called siblings. So ℓ1, ℓ2

and u are siblings, whereas ℓ3 and ℓ4 are siblings.

2.1 k-ary trees

A tree in which each node has ≤ k children is called a k-ary tree. An
examply of a 3-ary tree is in Figure 4 because there are three edges em-
anating from the root. We have a special name for 2-ary trees (k = 2):
binary trees. Binary trees are super important in computer science -
you will see them many times in the rest of your studies and career!
You will learn more about them in CS 201 (Data Structures).

Determining the probability of obtaining a particular sequence of
heads or tails when flipping a coin can be seen as a binary tree. Every
flip of the coin branches the sequence into one of two directions. This
is illustrated in Figure 5.

H T

H T H T

...
...

...
...

Figure 5: Binary tree represent-
ing the flipping of a coin.
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Example 2:
Can you determine the probability of obtaining the sequence H-T-
T-T-H-H when flipping a fair coin?

Solution:
It doesn’t really matter what the sequence is, only the number
of levels matters. Assuming we have a fair coin, the probabil-
ity of each branch is 0.5 (50%). Therefore, the probability of the
sequence is p = (0.5)6 = 1.56%.

We’ll do more examples like this when we discuss probability later
in the course.

3 Spanning trees

Example 3:
Build a tree of the following set of dots such that the total length of
all the edges is a minimum. You can draw an edge between any pair
of vertices.

What we did in the last example was built a spanning tree of the set
of vertices in G. What was the original graph?

Since we said any pair of vertices could be
connected by an edge, there was a secret
hidden graph that connected every vertex
to every other one. In fact, these types of
graphs are called complete.

Definition 8. A spanning tree T of a connected graph G = (V, E) is a
subgraph of G with the same vertices as G.

It is important to remember that the spanning tree has exactly the
same vertices as G, however, it has a subset of the edges of G. An ex-
ample of a spanning tree is given in Figure 6. Note that the spanning
tree is not unique. In particular, we could remove edge {b, c} and add
edge {e, f } in the spanning tree on the right of Figure 6 to a get a new
spanning tree.
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Figure 6: Example graph with a possible
spanning tree.We also have a really important result about connected graphs!

Theorem 1. Every connected graph has a spanning tree.
Smallest number of edges?

We used what is called the well-ordering
principle, which means that every non-empty
set has a least element. Here, we are look-
ing at the set of all possible subgraphs of G.
Our least-element is the subgraph that gives
us the minimum number of edges. Read
more about the well-ordering principle here.

Proof. We use a proof by contradiction. Suppose a connected graph
G has no spanning tree. Now, let T be a connected subgraph of G
with the same vertices as G and with the smallest number of edges
possible. Since T is not a spanning tree, then it has a cycle. But we
can remove an edge from the cycle without violating connectedness.
But then T would not have the smallest number of edges, so we have
a contradiction. Therefore, T must be a spanning tree of G.

Next class, we’ll looking at searching algorithms, which can be used
to create spanning trees.

https://en.wikipedia.org/wiki/Well-ordering_principle
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