Your first graph!

Definition: A graph G is a pair of Sets G = (V, E) where V is a nonempty set of items called Sets G = (V, E) where V is a E is a set of 2-item subsets of V called Sets G = (V, E) where V is a nonempty set of items called Sets G = (V, E) where V is a nonempty set of items called Sets G = (V, E) where V is a nonempty set of items called Sets G = (V, E) where V is a nonempty set of items called Sets G = (V, E) where V is a nonempty set of items called Sets G = (V, E) where V is a nonempty set of items called Sets G = (V, E) where V is a nonempty set of items called Sets G = (V, E) where V is a nonempty set of V called Sets G = (V, E) where V is a nonempty set of V called Sets G = (V, E) where V is a nonempty set of V called Sets G = (V, E) where V is a nonempty set of V called Sets G = (V, E) where V is a nonempty set of V called Sets G = (V, E) where V is a nonempty set of V called Sets G in V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called Sets G is a nonempty set of V called V is a nonempty set of V is a no

- two vertices v_i , v_j are <u>adjacent</u> if $\{v_i, v_j\} \in E$
- ullet the edge $e=\{v_i,v_j\}$ is <u>incident</u> to endpoints $\dfrac{ extstyle imes imes$

The *degree* of a vertex v is the number of edges incident to v, denoted deg(v).

Puzzle: At a party with n people, each person p_i reported talking to m_i people $(0 \le m_i < n)$. How many **total** conversations happened?

The handshaking lemma: the total sum of the vertex degrees is equal to twice the number of edges in a graph.

proof: We use a direct proof. Let G=(V,E) be a graph. To count the sum of all vertex degrees, traverse every edge and add the contribution from each endpoint:

$$(1+1)+(1+1)+\ldots$$
 (for every edge) = $Z[E]$ = sum of vertex degrees

Properties of graphs: weighted, simple, directed.

Representing graphs with an adjacency matrix.

Is put a 1 (or weight) if there is an edge be

Representing graphs with adjacency lists.

