
Graphs
Lecture 5F page 1

03/15/2024 Philip’s notes

Learning objectives:
2 describe basic graphs as a pair of a set of edges and a set of vertices,

2 describe why graphs are useful and where they come up in computer science,

2 represent graphs using adjacency matrices and adjacency lists,

2 sneakpeek into types of graphs,

2 sneakpeek into some graph algorithms.

One of the most important structures you will encounter in com-
puter science is that of a graph. The central concept of graphs is the
notion of connections between objects (we’ll define this formally soon).
Can you come up with some everyday examples in which you may
want to study connections between objects? Graph?

f (x)

x

Not this kind of graph, Pikachu, although you
might argue there are connections. For ex-
ample, you might consider the objects to be
values in R. There is a connection between
any x and f (x).

object connection
cities roads

people friends on Facebook
programs can run concurrently
web pages links

Example 1:
Suppose you are at a party with n people. If n is really big, then
it’s impossible for everyone to speak to each other during the party.
Instead, every person pi speaks to mi other people (0 ≤ mi ≤ n). Af-
ter leaving the party, everyone writes down how many people they
spoke with. Now that you have all the mi data (1 ≤ i ≤ n), how
many total conversations occurred at the party?

Click for the solution.

Source

Example 2:
In 1736 Konigsburg, Prussia, you decide to go for a stroll. The beau-
tiful Pregel River passes right through the city and you want to
maximize the amount of time you spend looking at the river. How-
ever, you need to get back to your cs200 problem set, so you need to
keep your walk on the shorter side. You, therefore, decide that you
should only cross each of the seven bridges exactly once. Can you
cross each of the seven bridges exactly once?

This is, in fact, the problem that gave birth to study of graphs.
Leonhard Euler proved that there is no solution. :(

It turns out that you need to have either zero or two nodes of odd
degree to cross every bridge once. We call this type of path through
a graph as an Eulerian path.

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Graphs
Lecture 5F page 2

03/15/2024

1 Graph definitions

Before we can do some fancy things with graphs, we need to make a
few definitions.

Definition 1. A graph G is a pair of sets G = (V, E) where V is a
nonempty set of items called vertices (or nodes) and E is a set of 2−item
subsets of V called edges.

v1

v2

v3

v4

v5

v6

v7
e1

e2

e3

e4

e5

e6

e7

e8 Figure 1: Example of a graph with 7 ver-
tices and 8 edges.

Your first graph!
For example, consider the graph of Figure 1 with 7 vertices and 8

edges. The set of vertices V is

V = {v1, v2, v3, v4, v5, v6, v7},

and the edges are

E = {e1, e2, e3, e4, e5, e6, e7, e8}
= {{v1, v2}, {v2, v4}, {v3, v4}, {v1, v3}, {v3, v5}, {v5, v6}, {v5, v7}, {v2, v7}}.

We say that two vertices vi, vj are adjacent if {vi, vj} ∈ E. We also say
that an edge e = {vi, vj} is incident to endpoints vi and vj.

Let’s return to the party example from the beginning of the lecture.
In order to determine the total number of conversations that occurred,
we need to make an important definition.

Definition 2. The degree of a vertex v is equal to the number of edges inci-
dent to that vertex, and is denoted by deg(v).

In the graph of Figure 1, deg(v1) = deg(v4) = deg(v7) = 2. Also,
deg(v2) = deg(v3) = deg(v5) = 3 and deg(v6) = 1.

Graphs
Lecture 5F page 3

03/15/2024

Now, consider what happens when you add up the degrees of every
vertex in a graph. This leads us to an important property of graphs,
known as the handshaking lemma.

Lemma 1. The total sum of the vertex degrees is equal to twice the number
of edges in a graph.

Proof. We use a direct proof. Let G = (V, E) be a graph. Traverse
every edge e ∈ E and add the contribution of that edge e = {vi, vj} to
the total degree of the endpoint vertices vi and vj.

∑
e∈E

(1 + 1) = 2|E| = ∑
v∈V

deg(v)

since we have added the contribution of every edge incident to every
vertex.

Therefore, we just need to add up the number of conversations re-
ported by every person and divide by 2 to count the total number of
conversations at the party. Other properties?

This is not an exhaustive list! We will see
other properties such as acyclic and con-
nected graphs, which further requires us to
define things like walks, paths, cycles.

2 Properties of graphs

The following are some important properties of graphs we will con-
sider in this course. Note that multiple properties can be combined for
a single graph.

2.1 Weighted

As we will see in future lectures, it is often useful to assign weights
to the edges or vertices of a graph. For example, the original graph
of Figure 1 has been redrawn with weights on the edges in Figure 3.
We may want to extract a subset of the edges of the graph and solve a
shortest path problem or a matching problem.

loop

multiple edges

Figure 2: Examples of graphs
that are not simple.

2.2 Simple

A graph is simple if it has no loops or multiple edges (often multiedges).
The graphs of Figure 1 and 3 are simple, but the graphs of Figure 2 are
not simple.

2.3 Directed

A directed graph (or digraph) is a graph G = (V, E) in which every
edge e ∈ E has an orientation. That is, an edge e = {vi, vj} is directed
from vi to vj, and vi may be called the tail, whereas vj is called the
head. The graph in Figure 3 is an example of a directed graph.

Graphs
Lecture 5F page 4

03/15/2024

v1

v2

v3

v4

v5

v6

v7

w1

w2

w3

w4

w5

w6

w7

w8 Figure 3: Example of a directed graph
with weights on the edges.

3 Representing graphs

Because graphs are so useful in computer science, we need a way to
represent them in a computer!

3.1 Adjacency matrix

One way to represent a graph is using an adjacency matrix. This is a
matrix A of size |V| × |V| in which the entry aij is nonzero if there is
an edge connecting vertex vi and vj. In the case of a directed graph,
entry aij is nonzero if the edge is directed from vi to vj. For example,

v1 v2 v3 v4 v5 v6 v7

v1 0 1 1 0 0 0 0
v2 1 0 0 1 0 0 1
v3 1 0 0 1 1 0 0
v4 0 1 1 0 0 0 0
v5 0 0 1 0 0 1 1
v6 0 0 0 0 1 0 0
v7 0 1 0 0 1 0 0

Adjacency matrix for the graph of
Figure 1.

v1 v2 v3 v4 v5 v6 v7

v1 0 w1 w4 0 0 0 0
v2 0 0 0 w2 0 0 0
v3 0 0 0 w3 w5 0 0
v4 0 0 0 0 0 0 0
v5 0 0 0 0 0 w6 w7

v6 0 0 0 0 0 0 0
v7 0 w2 0 0 0 0 0

Adjacency matrix for the graph of
Figure 3.

3.2 Adjacency list

An alternative method for representing graphs is using an adjacency
list. In an adjacency list for an unweighted graph, a list of neigh-

Graphs
Lecture 5F page 5

03/15/2024

boring vertices is stored for every vertex. In an adjacency list for an
edge-weighted graph, a list of pairs is stored for every vertex. The first
entry in the pair is the neighboring vertex, whereas the second entry
is the weight. For example,

vertex list
v1 (2,3)
v2 (1,4,7)
v3 (1,4,5)
v4 (2,3)
v5 (3,6,7)
v6 (5)
v7 (2,5)

Adjacency list for the graph of Figure 1.

vertex list
v1 (v2, w1), (v3, w4)

v2 (v4, w2)

v3 (v4, w3), (v5, w5)

v4 -
v5 (v6, w6), (v7, w7)

v6 -
v7 (v2, w8)

Adjacency list for the graph of Figure 3.

Example 3:
What is the adjacency matrix and list for the graph of Figure 4?

Solution:

v1 v2 v3 v4

v1 0 1
3

1
3

1
3

v2
1
2 0 0 1

2
v3 0 0 0 1
v4 0 0 0 1

vertex list
v1 (v2, 1

3), (v3, 1
3), (v4, 1

3)

v2 (v1, 1
2), (v4, 1

2)

v3 (v4, 1)
v4 (v4, 1)

v1

v2

v3 v4

1

1/3

1/3 1/3

1

1/2

1/2

Figure 4: Graph used in the ad-
jacency matrix & list examples.

Example 4:
Write pseudocode to determine the degree of vertex v in a graph
using (a) the adjacency matrix and (b) the adjacency list. Which one
do you think is faster?

Solution:
The algorithms are provided in Algorithms 1 and 2. Using the
adjacency list is faster because it requires only one operation (cal-
culating the length of the list). With the adjacency matrix, about
|V| operations are used.

4 Graph problems

Graphs allow us to solve some really interesting problems. In some
cases, we will be able to solve them in polynomial time. In others,
we may only be able to verify a solution in polynomial time, if such

Graphs
Lecture 5F page 6

03/15/2024

degree_matrix(vi, A)

input:
vi: vertex,
A: adjacency matrix for G = (V, E),

output: degree of vertex vi

1 degree = 0
2 for vj ∈ V
3 degree = degree +A(vi, vj)

4 return degree

Algorithm 1: Calculating the degree of
a vertex using the adjacency matrix.

degree_list(vi, A)

input:
vi: vertex,
A: adjacency list for G = (V, E),

output: degree of vertex vi

1 return length(A[v])

Algorithm 2: Calculating the degree of
a vertex using the adjacency list.

a solution exists. This brings us to the distinction between problems
that are in P, NP, NP-complete and NP-hard.

• P: problems which can be solved in polynomial time.

• NP: problems for which an algorithm can be verified in polyno-
mial time.

• NP-complete: problems which, if you find a solution, then all
problems in NP can be solved in polynomial time.

I want to solve an NP-complete problem!

I hope you do! There are more than 3000
known NP-complete problems. If you solve
one, you solve them all! Anyone who solves
an NP-complete problem wins a million dol-
lars.

4.1 Coloring

Given a graph G and k colors, assign a color to each vertex so that adja-
cent vertices get different colors. Certain problems, such as determin-
ing the minimum value of k (called the chromatic number of G) is NP-
complete. Graph coloring has applications to course exam scheduling.
For example, we may want to assign a time slot (color) for the exam of
each course in the college such that no students (who may possibly be
in the same course) have exam conflicts.

Graphs
Lecture 5F page 7

03/15/2024

4.2 Matching

Matching is an important problem that has applications to dating,
doctor-hospital assignments and minimum course requirements. Given
a graph G = (V, E), a matching M is a subgraph of G where every
node has degree 1. We won’t talk too much about matching in this
course, but if you are interested, please see the stable marriage prob-
lem. Some matching problems are in P, but some are in NP.

4.3 Searching

Given a graph G = (V, E), there are a few ways we can search for
a node that satisfies a particular property. The two methods we will
study are breadth-first search and depth-first-search. Searching is in P.

4.4 Shortest path

Determining the shortest path between vertices in a graph is a very
important problem! We won’t talk too much about shortest path al-
gorithms (Dijkstra, Bellman-Ford, etc.) in this course but you will see
these in CS 302. Determining the shortest path between two vertices
in a graph is in P. However, determining whether there is a shortest
path in a graph G from a starting vertex, that visits every vertex in G,
is NP-complete. See the Traveling Salesman Problem.

https://en.wikipedia.org/wiki/Stable_ma
https://en.wikipedia.org/wiki/Stable_ma
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://en.wikipedia.org/wiki/Travelling_salesman_problem

	Graph definitions
	Properties of graphs
	Weighted
	Simple
	Directed

	Representing graphs
	Adjacency matrix
	Adjacency list

	Graph problems
	Coloring
	Matching
	Searching
	Shortest path

