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03/06/2024 Philip’s notes

Learning objectives:
2 calculate the dot product and cross product of two vectors,

2 perform operations on matrices and vectors such as addition and multiplication,

2 prove identities that involve matrices using induction.

Mike Wazowski appears in these notes since linear algebra is used a
lot in computer graphics. The pictures were found here.

1 Vectors

A vector is an element of some abstract space, called a vector space
where certain axioms need to be satisfied (see below). When thinking
about vectors, it might make sense to think about an arrow in 2d,
which has x and y components. The 2d plane is the vector space, and
any arrow that we draw in the plane would be a vector in that space.
Vectors are often written with an arrow overhead (e.g. v⃗) but can often
be written in boldface when typed (e.g. v). We will typically represent
vectors as an array of numbers stacked in a column.

R2

v⃗

vx

vy

Figure 1: A two-dimensional
vector v⃗ ∈ R2 with x-component
vx and y-component vy.

1.1 Axioms of a vector space

Let V be a vector space and let v⃗1, v⃗2, v⃗3, . . . satisfy

• v⃗1 + v⃗2 = v⃗2 + v⃗1 ∈ V .

• v⃗1 + (⃗v2 + v⃗3) = (⃗v1 + v⃗2) + v⃗3.

• V contains the null element:
v⃗ + 0⃗ = v⃗, ∀v⃗ ∈ V .

• Each element of V has an inverse with respect to addition:
v⃗ + (−v⃗) = 0⃗, ∀v⃗ ∈ V .

How do I add two vectors together?

When adding two vectors together, add the
components of each vector to form a new
vector whose components is the sum of
the components of the two vectors you are
adding. Also, when multiplying a vector by
a scalar, multiply each component by the
scalar to form the components of the new
vector. See Example 1.2 for some practice.

Furthermore, let α, β, γ, . . . be scalars. Then if

• αv⃗ ∈ V ,

• (α + β)⃗v = αv⃗ + βv⃗,

• α(⃗v1 + v⃗2) = αv⃗1 + αv⃗2,

• αβv⃗ = α(βv⃗),

• 1⃗v = v⃗,

then V is a vector space with the elements v⃗1, v⃗2, v⃗3, . . . being called
vectors.

https://www.khdatabase.com/Gallery:Mike_Wazowski
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1.2 Linear independence, basis and dimension (optional)

Consider a set of n vectors v⃗1, v⃗2, v⃗3, . . . , v⃗n (all of which are not the
null vector 0⃗), as well as the expression

c1v⃗1 + c2v⃗2 + c3v⃗3 + · · ·+ cnv⃗n = 0⃗, (1)

for some constants c1, c2, c3, . . . , cn ∈ R. If one of the scalars is
nonzero, say c1, then we can rewrite this as

v⃗1 = − c2

c1
v⃗2 −

c3

c1
v⃗3 − · · · − cn

c1
v⃗n.

Since v1 can be rewritten in terms of the other vectors, then the set of
vectors are linearly dependent. That is, v1 depends on the other vectors
(since it can be written as a weighted sum of the other ones). How-
ever, if the only solution to Eq. 1 is c1 = c2 = c3 = · · · = cn = 0,
then v⃗1, v⃗2, v⃗3, . . . , v⃗n are called linearly independent. In this case,
v⃗1, v⃗2, v⃗3, . . . , v⃗n form a basis for a vector space V and any vector
v⃗ ∈ V can be written as Is the basis unique?

Great question! Actually the basis is not
unique and we can transform from one ba-
sis to another using a transformation (which
involves a matrix - see below). For exam-
ple, consider two vectors in two-dimensional
space, R2: v⃗1 = [1, 0]t and v⃗2 = [0, 1]t. I
can apply a transformation that rotates these
two vector by some arbitrary angle θ. Sup-
pose this angle is θ = 45◦. Our rotated
vectors could then be u⃗1 = [

√
2,
√

2]t and
u⃗2 = [−

√
2,
√

2]t. Sometimes, it may be
easier to work in one basis over another, and
we can perform a change of bases.

v⃗ = a1v⃗1 + a2v⃗2 + a3v⃗3 + · · ·+ anv⃗n,

for some constants a1, a2, a3, . . . , an (some of which can be zero). The
dimension of V is the number of linearly independent vectors that are
needed to form an arbitrary vector v⃗ ∈ V . In this case, dim(V) = n
since there are n linearly independent vectors.

This set of linear independent vectors forms a basis for V . We also
say that the set of vectors v⃗1, v⃗2, v⃗3, . . . , v⃗n spans the vector space V .

Example 1:
Let u⃗ = [2, 3]t, v⃗ = [−2, 1]t and w⃗ = [−4, 2]t. Don’t worry about

the t for now (it just means these are column vectors) - see the next
page for the transpose.

(a) Calculate αu⃗ + βv⃗ where α = 3 and β = 5.

(b) Consider the space with the vectors u⃗, v⃗, w⃗. What is the dimen-
sion of this space? Are u⃗, v⃗, w⃗ linearly independent?

Solution:
(a) The weighted sum is: 3[2, 3]t + 5[−2, 1]t = [6, 9]t + [−10, 5]t =

[−4, 14]t.

(b) Notice that w⃗ = 2⃗v, therefore, w⃗ is linearly dependent on v⃗.
The dimension of the vector space with vectors u⃗, v⃗, w⃗ is 2.
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1.3 Inner (dot) product between vectors in Rn

The inner (dot) product between two vectors u⃗ ∈ Rn and v⃗ ∈ Rn,
denoted by u⃗ · v⃗ or u⃗tv⃗ is the sum of all the multiplied components of u⃗ and
v⃗. Specifically,

u⃗ · v⃗ = u⃗tv⃗ = u1v1 + u2v2 + · · ·+ unvn.

When the inner product between two vectors is zero, then the vectors
are orthogonal or perpendicular to each other. Geometrically, if we glued
the tails of two orthogonal vectors together, then there would be an
angle of 90◦ between them. The inner product of a vector with itself What is that superscript t?

The superscript t on a vector, for example
u⃗t, denotes the transpose. The elements of
a vector can be thought to be stacked verti-
cally, like this

u⃗ =

[
2
3

]
.

The transpose of u⃗ converts this column into
a row: u⃗t = [2 3]. Some people will use a
capital T to denote the transpose.

is useful for calculating the magnitude, also called the norm, of the
vector. In the geometric interpretation of vectors in Figure 1, the mag-
nitude (norm) corresponds to the length of the arrow. For a general
vector u⃗ ∈ Rn, the norm is denoted by ||u⃗|| and is calculated as

||u⃗|| =
√

u⃗ · u⃗ =
√

u⃗tu⃗ =
√

u2
1 + u2

2 + · · ·+ u2
n.

1.4 Cross product between vectors in R3

When you want to calculate the normal of a surface, like the surface
defining Mike Wazowski, then we will need the cross product. The
cross product of two vectors u⃗ and v⃗ creates a new vector w⃗ which
is orthogonal to both u⃗ and v⃗. The cross product between two vectors
u⃗ = [ux, uy, uz] and v⃗ = [vx, vy, vz] is denoted by u⃗× v⃗ and is calculated
as

u⃗ × v⃗ = [uyvz − uzvy, uzvx − uxvz, uxvy − uyvx]

2 Matrices

A matrix is a rectangular array of numbers. It is handy if you want to
describe relationships between things (like in graph theory), transfor-
mations on vectors (like in computer graphics), or if you want to solve
some system of linear equations (which pretty much comes up any-
time you have a set of linear equations and unknowns – this happens
a lot!).

We will only consider square matrices here, in which the number
of rows is equal to the number of columns. We will also only look at
either 2-by-2 (2 × 2) or 3-by-3 (3 × 3) matrices, but the concepts extend
to any n-by-n matrix. The entries of a matrix A are often subscripted
with the row and column of that particular entry. For example, a 2 × 2
matrix A and 3 × 3 matrix B would respectively be denoted as

A =

[
a1,1 a1,2

a2,1 a2,2

]
, B =

 b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

 .
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3 Operations

3.1 Transpose

Just like when we took the transpose of a vector (a column) and ob-
tained a row vector, the transpose of a matrix involves exchanging
rows for columns and vice versa. For example,

B =

 b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3


t

=

 b1,1 b2,1 b3,1

b1,2 b2,2 b3,2

b1,3 b2,3 b3,3

 .

Matrices that satisfy Bt = B are called symmetric.

3.2 Multiplication

We’ll look at two types of multiplication here. The first is the multipli-
cation of a matrix with a vector. Matrix-vector multiplication is useful What if the sizes are different?

The sizes of whatever vectors or matrices
you are multiplying need to match! In other
words, the number of components in a vector
should be equal to the number of columns in
your matrix. For square matrices, both matri-
ces need to have the same number of rows
and columns.

if you want to transform a vector, say with a scaling, translation, or
rotation, which you may often encounter in computer graphics. For
example, suppose you want to rotate a model of Mike Wazowski: you
would construct a transformation matrix which represents the rotation
about the center of Mike, and then do a matrix-vector multiplication
for all the points on the surface of the geometry.

Multiplying a n × n matrix with a vector (with n components) re-
sults in a vector with n components. Each of these components is the
result of the inner product of a row of the matrix with the vector we
are multiplying with. For example, multiplying a 3 × 3 matrix B with
a three-dimensional vector u⃗ gives a new three-dimensional vector v⃗
as follows:

Bu⃗ =

 b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3


 u1

u2

u3

 =

 b1,1u1 + b1,2u2 + b1,3u3

b2,1u1 + b2,2u2 + b2,3u3

b3,1u1 + b3,2u2 + b3,3u3

 =

 b⃗t
r1

b⃗t
r2

b⃗t
r3


 u1

u2

u3

 =

 b⃗t
r1

u⃗
b⃗t

r2
u⃗

b⃗t
r3

u⃗


where b⃗r1 , b⃗r2 , b⃗r3 are vectors containing the entries in the rows of
the matrix B (note that I have written these to be column vectors even
though they are the rows of B, hence the transpose). This can also be
written as

Bu⃗ =

 b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3


 u1

u2

u3

 = u1

 b1,1

b2,1

b3,1

+u2

 b1,2

b2,2

b3,2

+u3

 b1,3

b2,3

b3,3

 = u1⃗bc1 +u2⃗bc2 +u3⃗bc3 .

where b⃗c1 , b⃗c2 and b⃗c3 are vectors containing the entries of the columns
of B. Note that Bu⃗ is in the space spanned by the columns of B.
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Example 2:
Say we have two equations and two unknowns (x and y) as follows

2x + 3y = 8,

−4x + 5y = 9. (2)

This system of equations can be represented as a matrix-vector prod-
uct: [

2 3
−4 5

]
︸ ︷︷ ︸

A

[
x
y

]
︸ ︷︷ ︸

u⃗

=

[
8
9

]
︸ ︷︷ ︸

v⃗

.

With these definitions of A, u⃗ and v⃗, we can write this system of
equations more concisely as Au⃗ = v⃗. Solving for x and y then
amounts to inverting A in order to obtain u⃗: u⃗ = A−1v⃗. We will not
look at techniques for inverting matrices in this course.

It doesn’t take much to extend our matrix-vector product method
to multiplying two matrices together. In fact, multiplying two n × n
matrices, A and B, results in a new n× n matrix, C, where each column
corresponds to the matrix-vector product of the first matrix A with the
columns of B.

We will restrict our attention to multiplying 2 × 2 matrices in this
course. For 2 × 2 matrices A and B, this looks like:

C = AB =

[
a1,1 a1,2

a2,1 a2,2

] [
b1,1 b1,2

b2,1 b2,2

]
=

[
(a1,1b1,1 + a1,2b2,1) (a1,1b1,2 + a1,2b2,2)

(a2,1b1,1 + a2,2b2,1) (a2,1b1,2 + a2,2b2,2)

]
=

[
c1,1 c1,2

c2,1 c2,2

]

Example 3:
Given the matrices A and B below, calculate AB and BA.

A =

[
3 5
−1 2

]
, B =

[
8 −4
3 1

]
.

Solution:

AB =

[
3 5
−1 2

] [
8 −4
3 1

]
=

[
39 −7
−2 6

]
, BA =

[
8 −4
3 1

] [
3 5
−1 2

]
=

[
28 32
8 17

]
.

Note that these are not equal!
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4 Proofs involving matrices

Let’s now combine our knowledge of matrices and do a proof by in-
duction!

Example 4:
Prove, using a proof by induction, that An = B(n) for all n ∈ N,
where

A =

[
1 −1
0 2

]
, B(n) =

[
1 1 − 2n

0 2n

]
.

Proof. We use a proof by induction. Let the induction hypothesis be
the predicate p(n) = An = B(n) for the matrices A and B(n) given
above.

Base case: For n = 1, we have

A1 =

[
1 −1
0 2

]1

=

[
1 1 − 21

0 21

]
= B(1).

Inductive step: Assume p(n) is true. That is, An = B for some
positive integer n. We will prove that p(n + 1) is true, meaning
An+1 = B(n + 1). Starting with An+1 gives

An+1 = An A =

[
1 1 − 2n

0 2n

] [
1 −1
0 2

]
, by p(n)

=

[
1 (−1 + 2 − 2n+1)

0 (2 · 2n)

]
, multiplying An by A

=

[
1 1 − 2n+1)

0 2n+1

]
, verifying p(n + 1).

By induction on n, p(n) is true.
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