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Learning objectives:
2 state the basic steps of a proof by induction

2 prove some simple propositions using induction

We have seen a variety of methods for proving propositions and
implications. Sometimes we need to prove a proposition that involves
a set or a sequence of objects. We might also need to prove the correct-
ness of a recursive algorithm. In general, we might need to consider
the size of the problem, and show that a proposition or algorithm
works regardless of the problem size. This is where induction will be
useful. Consider the following motivating example. Seeds?

1,000,000 seeds is a heap of seeds.
If 1,000,000 seeds is a heap,
then 999,999 seeds is a heap.
So 999,999 seeds is a heap.
If 999,999 seeds is a heap,
then 999,998 seeds is a heap.
So 999,998 seeds is a heap.
...
So 1 seed is a heap.

This is known as Sorites Paradox.

Example 1:

Suppose you have unlimited 5¢ and 8¢ postage stamps.

(a) Can you make 4¢? no!

(b) Can you make 28¢?

5¢ 5¢ 5¢ 5¢ 8¢

(c) Can you make 85,694¢?

We’ll get back to part (c). First, think about if you can make 31¢
starting from 30¢.

5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 8¢ 8¢

Hmmm, okay, what about 32¢ from 30¢?

5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 8¢ 8¢ 8¢ 8¢

And now, 33¢ from 30¢:

5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 8¢

And finally, 34¢ from 30¢:

5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 8¢ 8¢ 8¢

https://en.wikipedia.org/wiki/Sorites_paradox
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Clearly, we can make 35¢ from 30¢ by just adding another 5¢
stamp. Wow! So what does this tell us? Well, it means that we can
make any postage stamp value (greater than 28) from an existing
one. This is the idea behind induction, which we will now look at
more formally.

Back to part (c) though. How do you make 85,694? Well, we can
make n = 85, 690¢ with 17, 138 × 5¢ stamps. We just showed that
we can make (n+ 4)¢ by removing 4× 5¢ stamps and adding 3× 8¢
stamps, so 17, 134 × 5¢ stamps and 3 × 8¢ stamps. Note: there are
other ways to make this value.

1 The Principle of mathematical induction

p(0) =⇒ p(1)

p(1) =⇒ p(2)

...

p(n) =⇒ p(n + 1)

base

The main idea behind induction is to prove some predicate p holds at
n + 1 if we already know that it holds for some value at n. That is, we
want to show that p(n) =⇒ p(n + 1).

Mathematical induction is often related to falling dominoes or climb-
ing a ladder. In the ladder metaphor, you need some kind of base to set
your ladder on (usually the ground). Now, to get to a particular rung,
you need to set yourself on the rung below it. And again, you need to
set yourself on the rung below that one, and so on and so forth, until
you hit the base.

How do I approach the inductive case?

There are two main approaches you can use
to prove the inductive cases:

1. Start with p(n) = true, manipulate into
showing p(n + 1) is true. This is com-
mon when proving propositions involving
some sequence of numbers.

2. Start with p(n + 1) and "break off" part
of the problem so that you are left with a
p(n) part (which you know is true), then
bring the extra "+1" part back in. This
is more common when proving proposi-
tions related to algorithm correctness or
with graphs (as we will see later).

However, keep in mind that it is super incor-
rect to prove p(n + 1) =⇒ p(n)!

There are some really important ingredients you need when doing
a proof by induction:

• Write: We use a proof by induction.

• Identify and state your induction variable: this is extremely im-
portant and can often be the culprit in a faulty induction proof.

• Identify and state your induction hypothesis: this is the pred-
icate that you will suppose on your induction variable. It will
often be clear what your induction hypothesis is based on the
proposition you are trying to prove.

• Prove your base case. Always (always, always) prove your base
case. It is also really important to identify the value of your
induction variable at the base case.

• Prove the inductive case. Prove that p(n) =⇒ p(n + 1). You
can use any method we have seen so far.

• Conclude your proof by stating By induction, this means . . . .
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Example 2:
Identify the (a) base case, (b) induction variable and (c) induction
hypothesis for the earlier postage stamp example.

Solution:
(a) The base case is for n = 28 since this was mentioned in the

problem.

(b) The induction variable is n: the value of the postage stamp to
be created.

(c) The induction hypothesis is: a postage stamp value of n¢ can
be created from 5¢ and 8¢ stamps.

Example 3:
Prove that you can make any stamp value greater than or equal to
28¢ using either 5¢ stamps and 8¢ stamps.

Proof. We use a proof by induction on the stamp value n. Let the
induction hypothesis be: p(n) = you can make a stamp value greater
than or equal to 28 using either 5¢ stamps and 8¢ stamps.

Base case: We can make a value of 28¢ from 4 × 5¢ stamps and
1 × 8¢ stamp.

Inductive step: Suppose p(n) is true. That is, we can create a
postage value of n with 5¢ stamps and 8¢ stamps. Note that we
must use at least 3 × 5¢ stamps or 3 × 8¢ stamps (since using 2
of each would only give a value of 26¢). Therefore, any value of
n + 1 stamps can be created by either (1) removing 3 × 5¢ stamps
and adding 2 × 8¢ stamps or (2) removing 3 × 8¢ stamps and
adding 5 × 5¢ stamps. Therefore, any value of (n + 1)¢ can be
made from n¢.

By the principle of mathematical induction, p(n) is true for all n ≥
28.
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2 Examples

Example 4:
Prove 2n − 1 ≤ 3n for all integers n ≥ 0.

Solution:
Proof. We use a proof by induction on an integer n. Let the in-
duction hypothesis be p(n) = “2n − 1 ≤ 3n”.

Base case: Our base case is for n = 0. We have 20 − 1 = 0 ≤ 30.

Inductive case: Assume p(n) is true. Then 2n − 1 ≤ 3n. Look-
ing at p(n + 1):

2n+1 − 1 = 2 · 2n − 2 + 1 manipulating

= 2(2n − 1) + 1 manipulating

≤ 2 · 3n + 1 by p(n)

≤ 2 · 3n + 3n since 1 ≤ 3n for n > 0

= 3n(2 + 1) manipulating

≤ 3n+1

Therefore, by induction 2n − 1 ≤ 3n for n ≥ 0.

Example 5:
Prove 3|n3 − n, ∀n ≥ 0.

Solution:
Proof. We use a proof by induction on an integer n. Let the in-
duction hypothesis be: p(n) = “3 | n3 − n”.

Base case: Our base case is for n = 0, for which we have that
3 divides 03 − 0 = 0.

Inductive case: Assume p(n) is true. Then 3 divides n3 − n.
This means n3 − n = 3k for some k ∈ Z. Looking at p(n + 1):

(n + 1)3 − (n + 1) = n3 + 3n2 + 3n + 1 − n − 1 expanding

= n3 − n + 3n2 + 3n manipulating

= 3k + 3(n2 + n) by p(n)

= 3k + 3m factoring, and n2 + n ∈ Z

= 3(k + m) k + m is also an integer

Therefore, by induction 3 divides n3 − n.
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Example 6:

Prove that 1 + 2 + 3 + · · ·+ n = n(n+1)
2 using induction.

Solution:
Proof. We use a proof by induction on n ∈ N. Let the induction
hypothesis be p(n) = “1+ 2+ · · ·+ n = n(n+1)

2 ” on the induction
variable n.

Base case: Our base case is for n = 1. We have

1 =
1(1 + 1)

2
= 1.

Inductive case: Assume p(n) is true. Then 1 + 2 + · · ·+ n =
n(n+1)

2 . Looking at the sum of the first n + 1 integers yields:

1 + 2 + · · ·+ n + (n + 1) = (1 + 2 + · · ·+ n) + (n + 1) breaking out the n + 1

=
n(n + 1)

2
+ (n + 1) by p(n)

=
n(n + 1) + 2(n + 1)

2
manipulating

=
(n + 1)(n + 2)

2
manipulating

= p(n + 1)

Therefore p(n + 1) is true. By induction, 1 + 2 + · · · + n =
n(n+1)

2 .
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