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Learning objectives:
2 prove an implication using the contrapositive

2 prove by assuming a contradiction

2 prove an if-and-only-if
If you’re interested, there’s a really nice

movie starring Russell Crowe called A Beau-
tiful Mind. Or you can read the biography by
Sylvia Nasr [1].

One of my favorite stories about proofs involves John F. Nash, who
is popularly known for his contributions to game theory. However,
there is one particular proof that I find beautiful, which is known as the
isometric embedding theorem. Very loosely speaking, it relates whether
any description of a surface can exist in 3d without intersecting itself.
Many people tried to prove you could "embed" such a surface ever
since the theorem was first postulated in 1873. They came up with
special cases and restrictions but no one was able to fully prove the ex-
istence of such an embedding. Then John Nash comes along, a young
professor at MIT. He learns about this theorem but isn’t sure if it’s
worth his time to prove it. So he decides to go around MIT, telling
everyone that he proved the theorem (which he hadn’t) but the jaw-
dropping reactions he got from his colleagues was enough to motivate
him to actually prove the theorem, which he completed in 1956.

1 Method # 3: contrapositive

Remember rule # 3 when we studied deduction? Specifically, p =⇒ q
is logically equivalent to ¬q =⇒ ¬p. So if we prove that ¬q =⇒ ¬p,
then we are done. Here are the steps:

1. Write: We prove the contrapositive.

2. State the contrapositive: ¬q =⇒ ¬p.

3. Start with ¬q.

4. Proceed as in Method #1.

Example 1:
If a2 is not divisible by 4, then a is odd.
Proof. We use the contrapositive. Let a ∈ Z. Suppose a is even.
Then ∃ k ∈ Z : a = 2k. This means a2 = 4k2. Since a is an integer,
4|a2.

Example 2:
If x is irrational, then

√
x is also irrational.

Proof. We use the contrapositive. Let
√

x be a rational number. This
means

√
x = m

n for some m, n ∈ Z by the definition of a rational
number. Then x = m2

n2 = a
b for a, b ∈ Z. Therefore, x is also rational.

https://en.wikipedia.org/wiki/Nash_equilibrium
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2 Method # 4: proof by contradiction

So far, we’ve seen a variety of methods for proving implications: p =⇒
q. But say you just want to prove that a proposition p is true. You
might be able to reason that p is true directly (as in the last lecture),
but we’ll now look at another useful method: proof by contradiction.
The main idea is to suppose the proposition p is false, and then come
up with a contradiction. Thus, p must be true. Here are the steps:

• Write We use a proof by contradiction.

• Write Suppose the proposition p is false.

• Deduce something known to be false (the contradiction).

• Write This is a contradiction. Therefore, p must be true.

Let’s practice:

Example 3:

Prove that
√

2 is irrational.

Solution:
Proof. We use a proof by contradiction. Let p be the proposition
that

√
2 is irrational. Suppose this claim is false, which means√

2 is rational. Then
√

2 = a/b for some a, b ∈ Z. Without loss
of generality, assume that the fraction a/b is simplified in lowest
terms. Then a2 = 2b2 which means a is even, so a = 2k for some
k ∈ Z. This means a2 = 4k2 = 2b2, so b2 = 2k2, meaning b is
also even. We said a/b was simplified in lowest terms, but if a
and b are both even, then this is a contradiction, because we can
simplify it further. Thus,

√
2 is irrational.

Example 4:
Prove ¬∃x, y ∈ Z such that x2 = 4y + 2.

Solution:
Proof. We use a proof by contradiction. Assume there exists x, y ∈
Z such that x2 = 4y + 2. Then x2 = 2(2y + 1) = (2m)2 (m ∈ Z)
is even, so x is even. Solving for y yields

y =
4m2 − 2

4

= m2 − 1
2

Since m ∈ Z, this means y /∈ Z, which is a contradiction.
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Example 5:
For every x ∈ [π/2, π], sin x − cos x ≥ 1.
Proof. We use a proof by contradiction. Suppose sin x − cos x <

1 for x ∈ [π/2, π]. Squaring both sides gives sin2 x + cos2 x −
2 sin x cos x < 1, which leads to −2 sin x cos x < 0. We know that
−1 ≤ cos x ≤ 0 and 0 ≤ sin x ≤ 1 for x ∈ [π/2, π]. However, if sin x
is always positive and cos x is always negative in the domain consid-
ered, then −2 cos x sin x is always positive. This is a contradiction,
so sin x − cos x ≥ 1 for x ∈ [π/2, π].

3 Proving an "iff"

In order to prove statements involving if-and-only-if, recall that the
biconditional p ⇐⇒ q is logically equivalent to (p =⇒ q) ∧ (q =⇒
p). Therefore, we need to prove both implications. Here are the steps:

1. Write We prove p implies q and vice-versa.

2. Write First, we show p implies q, then pick any method to prove
p =⇒ q.

3. Write Next, we show q implies p, then pick any method to prove
q =⇒ p.

Here is a nice example that combines some of the techniques we
have learned so far:

Example 6:
Suppose a ∈ Z. Prove that 14|a if and only if 7|a and 2|a.

Solution:
We prove 14|a implies 7|a and 2|a and vice-versa.

First we prove that if 14|a, then 7|a and 2|a. Suppose 14|a.
Then, a = 14k for some k ∈ Z. This means a = 7(2k) = 7m for
some m ∈ Z. This also means a = 2(7k) = 2n for some n ∈ Z.
Therefore, both 2 and 7 divide a.

Next we prove that if 2|a and 7|a, then 14|a. Suppose 2|a and
7|a. Then (1) a = 2k for some k ∈ Z and (2) a = 7n for some
integer n ∈ Z. By (1), a is even, which means 7n is even. This
means that n is even and can be written as n = 2m for some
m ∈ Z. So a = 7n = 7(2m) = 14m, therefore, 14|a.
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4 Existence proofs

Just like John Nash, sometimes you need to prove that something ex-
ists, or doesn’t exist. In general, there are two techniques you can use:

• Proof by Example: useful if you have statements like
Prove there exists . . . .

• Proof by Counterexample: useful if you have statements like
Prove not all . . . .

Ultimately, both of these reduce down to finding an example in which
you want to prove the existence to support or refute a proposition.
Be very careful, it is wrong to use an example to prove a "for all"
proposition! "not all" versus "there is"?

Remember how we negate quantifiers:

¬∀x, p(x) ≡ ∃x : ¬p(x)

Example 7:
Which could be proved using an example?

(a) ∀x ∈ S, p(x)

(b) ∀x ∈ S, ¬p(x)

(c) ¬∃x ∈ S : p(x)

(d) ¬∀x ∈ S, p(x)

Solution:
We can use an example to prove (d) only. De Morgan’s rules on
(d) lead to ¬∀x ∈ S, p(x) ≡ ∃x ∈ S : p(x). For all other options
(a), (b) and (c), a single example is not enough.
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