
More induction
Lecture 3F page 1

03/01/2024 Philip’s notes

Learning objectives:
2 identify errors in inductive proofs

2 prove correctness of recursive programs with induction

Last time, we introduced induction. Let’s warm up by trying to iden-
tify errors in the following proof. Be careful!

Be careful with your implications! It is incor-
rect to show that p(k + 1) =⇒ p(k).

Example 1:
The following sentences are used to prove the following proposi-
tion. Put them in order, and correct any errors.

Prove that 7n − 1 is a multiple of 6 for all n ≥ 0.

• Then there exists an integer b such that 7k − 1 = 6b.

• Because b is an integer, 7b + 1 is an integer, so p(k + 1) is true.

• Inductive step: Let k ≥ 1 and assume that p(k) is true.

• Let the induction hypothesis be the predicate: p(n) = 7n − 1 is a
multiple of 6 for all n ≥ 0.

• Base case: p(1) is true because 71 − 1 = 6, which is a multiple of
6 since 6 × 1 = 6.

• We use a proof by induction.

• Let the induction hypothesis p(n) is true.

• Therefore, by induction on n, p(n) is true for all n ≥ 0.

• Multiplying both sides by 7, we get 7k+1 − 1 = 6(7b + 1).

Solution:
Proof. We use a proof by induction. Let the induction hypothesis
be the predicate: p(n) = 7n − 1 is a multiple of 6. We will prove
that p(n) is true for all n ≥ 0.

• Base case: p(0) is true because 70 − 1 = 0, which is a multiple
of 6 since 6 × 0 = 0.

• Inductive step: Let n ≥ 0 and assume that p(n) is true. Then
there exists an integer b such that 7n − 1 = 6b. Multiplying
both sides by 7 and adding 6 to both sides, we get 7n+1 − 1 =

6(7b + 1). Since b is an integer, then 7b + 1 is also an integer,
so p(n + 1) is true.

Therefore, by induction on n, p(n) is true for all n ≥ 0.

Note that in the second sentence, it is incorrect to keep the for
all quantifier, because p(n) would no longer be a predicate in that
case (it still needs to depend on the input variable n).

More induction
Lecture 3F page 2

03/01/2024

1 Induction with sets

We’ve done a bunch of number-y examples, so let’s do one with sets.
This is good practice for the types of proofs we will do later with
graphs.

Define the power set as the set of all possible subsets of a set. For
example, for a set A = {a, b, c}, the power set is

P(A) = {∅, {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}} .

Example 2:
Prove that the cardinality of the power set with n elements is

|P(A)| = 2n.

Solution:
Proof. We use a proof by induction. Let the induction hypoth-
esis be: p(n) = the cardinality of the power set with n elements is
|P(A)| = 2n.

Base case: Our base case is for n = 0, in which we have the
single emptyset. Therefore, |P(A)| = 20 = 1.

Inductive case: Assume p(n) is true. Then the cardinality of
the power set of a set with n elements is 2n. Now, consider the
set An+1 with n+ 1 elements: {a1, a2, . . . , an, an+1}. We want
to show that P(An+1) = 2n+1. Remove the last element of
An+1, to create a set with n elements: An = {a1, a2, . . . , an}.
By the definition of the power set, P(An+1) includes every
element in P(An) paired with an+1, along with every element
in P(An):

P(An+1) = P(An) ∪ {x ∪ an+1 | x ∈ P(An)} .

The cardinality of |P(An+1)| is the sum of the cardinalities of
both sets, minus the cardinality of their intersection. Therefore,

|P(An+1)| = |P(An)|+ |{x ∪ an+1 | x ∈ P(An)}|
= 2n + |{x ∪ an+1 | x ∈ P(An)}| by p(n)

= 2n + 2n 2n elements of P(An) are paired with an+1

= 2 · 2n

= 2n+1

Therefore, by induction the cardinality of the power set of a set
with n elements is 2n.

More induction
Lecture 3F page 3

03/01/2024

Mathematical induction has a lot of similarities with recursion. Re-
member, that when writing recursive programs, it is very important to
make sure you have a base case and recursive case, similar to the base
case and inductive steps used in a proof by induction. It is important
to make sure your recursive programs work correctly, so we will now
practice proving the correctness of a few recursive functions.

Consider the following pseudocode which describes a recursive so-
lution for reversing a string.

reverseString(s)

input: s (string)
output: reversed string

1 if length(s) == 1 # base case
2 return s
3 else # recursive case
4 return reverseString(s[1:]) + s[0]

Algorithm 1: Recursive function for re-
versing a string. Here, the string in-
dexing starts at 0 (like Python or C-
like languages). Elements (characters) of
the string can be accessed with square
brackets ([]), and a substring can be ex-
tracted with a colon (start : end).

Pseudocode?

This is often useful when you want to de-
scribe a sequence of steps as you would in
a programming language without restricting
yourself to specific language. You can use
basic keywords like if, else, for, return and
also highlight when you might be calling a
separate function. The focus of pseudocode
is truly on the algorithm along with the corre-
sponding inputs and outputs, not on the se-
mantics of your code.

Example 3:
Prove that the reverseString function listed in Algorithm 1 is cor-
rect.

Solution:
Proof. We use a proof by induction. Let p(n) be the predicate that
reverseString correctly reverses an input string of length n. We
will prove that reverseString correctly reverses strings for n ≥ 1.

Base case: Consider strings of length n = 1. The reverse of this
string is just the string itself, which Line 2 correctly returns.

Inductive case: Let n > 1 and assume that p(n) is true. That
is, reverseString correctly reverses strings of length n. Now
consider a string of length n + 1. Since n ≥ 1, the algorithm
jumps to the recursive step on Line 4. Remove the first char-
acter from this string to create a string of length n and pass
this into reverseString. By p(n), then this string of length n is
correctly reversed and we need only move the first character
(which we removed to create a string of length n) to the end.
This is what Line 4 does, so p(n + 1) is true.

Therefore, by induction on the length of the input strings n, re-
verseString works correctly.

In the last example, we proved the correctness of the stringReverse

More induction
Lecture 3F page 4

03/01/2024

function. Sometimes, we want to prove our recursive function achieves
some property.

Sample output of Algorithm 2

for n = 50, L = 50 and α = 0.95.

Example 4:

Prove that the total length drawn by Algorithm 2 is L 1−αn

1−α , when
called with n generations n > 0 and a factor 0 < α < 1.

Solution:
Proof. We use a proof by induction on the number of generations
n. Let the induction hypothesis be p(n) = Algorithm 2 draws a
total length of L 1−αn

1−α .

Base case: Our base case is at n = 0, in which case nothing is
drawn. Line 2 correctly draws nothing at n = 0, which agrees
with p(0) = L 1−α0

1−α = 0
1−α = 0 since α ̸= 0.

Inductive step: Assume p(n) is true. That is, the total length
drawn by spiral(n, L, α) = L 1−αn

1−α . Now consider the call spi-
ral(n + 1, L, α) for n > 0. We are now in the recursive case.
Since p(n) is true, then Line 6 draws a spiral of length αL 1−αn

1−α .
Don’t forget the α in front because the L that is passed to spiral
is αL. The only additional drawing happens on Line 5, which
incurs an additional length of L. Therefore, the total length
drawn at n + 1 is

αL
1 − αn

1 − α
+ L = L

α − αn+1 + 1 − α

1 − α
= L

1 − αn+1

1 − α
.

Thus, by induction on the number of generations n, p(n) is true.

spiral(n, L, α)

input: n: number of generations, L: length to draw,
α: factor to decrease length in next generation
output: none

1 if n == 0 # base case
2 return
3 else # recursive case
4 turn_left(30 degrees) # turns left by 30 degrees
5 draw_line(L) # draws a straight line of length L
6 spiral(n − 1, αL, α)

Algorithm 2: Recursive function for
drawing a spiral. Assume that the func-
tion draw_line draws a straight line of
some input length L and turn_left turns
the heading by some input angle (in de-
grees). This is very similar to the for-
ward and left functions in Python’s Tur-
tle graphics module.

https://docs.python.org/3.3/library/turtle.html
https://docs.python.org/3.3/library/turtle.html

	Induction with sets

