Union of three sets (example from last class):

Track the curved triangle!

\[|S| + |C| + |G| - |S \cap G| - |S \cap C| - |C \cap G| + |S \cap C \cap G| \]
Quantifiers can be used to quantify the values of predicates.

\[\forall x \in \mathbb{N}, \ x > 0 \]

\(\forall \) means "for all"

\[\exists x \in \mathbb{N} : x < 0 \]

\(\exists \) means "exists"

"such that"
Example 1: translate Some birds can fly.

Let A be the set of all animals.
Let $b(x)$ be the predicate that x is a bird.
Let $f(x)$ be the predicate that x can fly.

\[\exists x \in A : (b(x) \land f(x)) \]

is this okay? \[\exists x \in A : b(x) \Rightarrow f(x) \]

x is an elephant

\[b(x) \quad F \quad F \Rightarrow F \quad \text{is T} \]

\[f(x) \quad F \]
Negating quantified expressions.

Every Middlebury student lives on campus.

\[\forall x \in S, \ p(x) \]

\(p(x) \) : \(x \) lives on campus

\(S \) : students

what about:

Not every student lives on campus.

\[\neg (\forall x \in S, \ p(x)) \]

There exists one student who does not live on campus.

\[\exists x \in S : \neg p(x) \]

\(\neg (\forall x \in S, \ p(x)) \equiv \exists x \in S : \neg p(x) \)

\(\neg (\exists x \in S : p(x)) \equiv \forall x \in S, \neg p(x) \)
Some tips!

- Combine multiple elements of same type with a quantifier:
- Any non-quantifier variables should be inputs to a predicate,
- When a variable is quantified, rewrite your predicate in terms of remaining variables: \(\exists y \in S: p(x,y) \) rewrite as \(q(x) \)
- All variables in a statement should be quantified.
Example 2: Determine whether the following statements are true or false.

Let S be the set of all people. Let $p(x, y)$ be the predicate that x is a parent of y.

- $\forall x \in S, \exists y \in S: p(x, y)$ every person has a child $\quad \text{F}$
- $\forall x \in S, \exists y \in S: p(y, x)$ every person has a parent $\quad \text{T}$
- $\exists x \in S, \forall y \in S: p(y, x)$ one person is the child of all people $\quad \text{F}$
Example 3: Translate the following to math.

Let S be the set of people in the class.
Let $F(x, y)$ mean that person x considers person y to be their friend ($x \neq y$).

1. Proposition p states that there is some super likable person in the class that everyone considers their friend.
 \[\exists x \in S \forall y \in S, \ F(y, x) \]

2. Proposition q states that everyone in the class has at least one person they consider to be their friend.
 \[\forall x \in S \exists y \in S \ F(x, y) \]

3. Proposition r states that there is a mutual friendship in the class.
 \[\exists x, y \in S : \ F(x, y) \land F(y, x) \]

4. Predicate (b) states that everyone who considers person x to be their friend also considers person y to be their friend.
 \[\forall z \in S, \ F(z, x) \rightarrow F(z, y) \]