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Learning objectives:
2 prove an implication directly

2 divide a proof into cases

Last time, we talked about deduction, where we looked at two
strategies for deducing a conclusion from a set of premises: (1) us-
ing a truth table and (2) using rules of inference to reason through the
premises. Today, we’ll use our reasoning skills to start proving propo-
sitions, lemmas and theorems. The structure of the proofs we will see
today is very similar to what we saw with deduction. Ultimately, we
want you to write rock-solid proofs, unlike the one below:

Example 1:
What’s wrong with this proof?

1 =
√

1 =
√
(−1)(−1) =

√
−1

√
−1 =

(√
−1

)2
= −1

Solution:
The problem is that

√
xy ̸=

√
x
√

y unless both x and y are non-
negative, which is not true.

1 Structure
What if I have equations?

You’ll often have equations that will comple-
ment the textual description of your proof.
Make sure that the equals sign is left-aligned
when simplifying your expressions. Don’t
write

A = B = C = D

unless you are embedding the equations
within your sentences. If you are separat-
ing your text and equations, then you should
instead write

A = B

= C

= D.

For example,

x3 + 2x2 + x = x(x2 + 2x + 1)

= x(x + 1)2

The structure of a proof is very similar to what we have seen so far.
However, you generally will not write out all your steps in tabular
form like we did with deduction. Instead, you will write complete
sentences, interspersed with equations, to describe the steps in your
proof.

Here are some guidelines for writing proofs (adapted from Mathe-
matics for Computer Science[1]):

• State your plan: Specify which proof method you are using. Use
the personal pronoun We to start off this description. For exam-
ple, We use the contrapositive or We argue by contradiction.

• Introduce your variables: Remember to define all variables you
use in your proof. Start these sentences off with something like
Let x be an integer or There exists some y such that . . . .

• State your assumptions: Your assumptions might be incorrect,
but your proof might logically follow. You’ll still get a lot of
credit for your proof (in this class). Start these sentences off with
Suppose . . . or Assume . . . .
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• A proof is an essay, not a calculation: I know, this is a math
class. But proofs involve complete sentences.

• Revise and simplify: Ask yourself if you are conveying all the
information in as little space (and words) as possible.

• Finish: Don’t forget to write a concluding sentence (Therefore, As
a result, Thus) that re-iterates what you are trying to prove (and
also don’t forget the little box).

2 Proving an "if"

Here, we are looking to prove statements like if p then q. Recall the
truth table for the implication p =⇒ q, reproduced on the right.

Truth table for if ( =⇒ )

p q p =⇒ q
T T T
T F F
F T T
F F T

You don’t need to worry about the cases in which p is false, but q is
true, because we want to prove that p being true leads to q being true.
There are a few methods that are useful for proving an implication:
p =⇒ q.

2.1 Method # 1: massage

SCRAP

There’s nothing special here, but all the other methods depend on it,
so we might as well give it a name. The idea is to start with your
statement p and massage your equations until you prove what you’re
looking for. This will involve bringing in other information, such as
your premises, or other mathematical identities. Here are the steps:

1. Write: Assume p or Suppose p, then state p.

2. Explain, manipulate and play around (following the guidelines).

3. Therefore, q.

There is a lot of art in Step 2, where you need to manipulate the in-
formation you have, whether they be premises or other mathematical
identities. It’s a good idea to use scrap paper (separate from your
proof).

Example 2:
If a|b and b|c then a|c (for integers a, b, c). Note: The vertical bar
you see here refers to divides. So a|b reads: a divides b, which means
that b/a ∈ Z.
Proof. Let a, b, c ∈ Z. Assume a|b and b|c. This means ∃m, n ∈ Z

such that b = am and c = bn. Then c = bn = (am)n = a(mn) = a(k)
for some k ∈ Z. Therefore, c = ak for k an integer, and a|c.
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Example 3:
If n is an odd integer, then n2 + 3n + 5 is odd.
Proof. Let n be an odd integer, n = 2k + 1, k ∈ Z. Then

n2 + 3n + 5 = (2k + 1)2 + 3(2k + 1) + 5

= 4k2 + 4k + 1 + 6k + 3 + 5

= 4k2 + 10k + 9

= 2(2k2 + 5k + 4) + 1

= 2m + 1

for some m ∈ Z. Therefore n2 + 3n + 5 is odd.

The last example is a bit tricky at first, but remember that we were
trying to show n2 + 3n+ 5 is odd. This means that we want to massage
it into something that looks like 2m + 1 for some integer m. How do I represent even or odd numbers?

You will often encounter problems that in-
volve even and/or odd numbers. Here is a
trick to represent them. If n is an even inte-
ger, we can write it as

n = 2k, k ∈ Z.

Similarly, if n is an odd number, we can write
it as

n = 2k + 1, k ∈ Z.

2.2 Method # 2: split into cases

Sometimes, it’s easier to split the domain of your variables into sepa-
rate cases, and prove each case separately. It’s important to be explicit
about which case you are proving. For example, if you are proving
something involving ∀x ∈ Z, you might split into: Case 1: x < 0 or
Case 2: x > 0 or Case 3: x = 0. Make sure you consider all cases!

Example 4:
If n ∈ N, then 1 + (−1)n(2n − 1) is a multiple of 4.

Solution:
Proof. Suppose n ∈ N. We consider the cases when n is even or
odd.

Case 1: Let n be a positive even integer. Then n = 2k for k ∈ N.
This means 1 + (−1)2k(2(2k)− 1) = 4k which is a multiple of
4.

Case 2: Let n be a positive odd integer. Then n = 2k + 1 for
k ∈ N. This means 1 + (−1)2k+1(2(2k + 1)− 1) = −4k which
is a multiple of 4.
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Example 5:
If n ∈ Z then n2 + 3n + 4 is even.

Solution:
We are told that n is any integer, so the trick here is to split into
cases by considering the case when n is even and then when n is
odd.
Proof. We consider two cases.

Case 1: Let n be an even integer. Then n = 2k for some k ∈ Z.
This means

n2 + 3n + 4 = (2k)2 + 3(2k) + 4

= 4k2 + 6k + 4

= 2(2k2 + 3k + 2)

= 2m

for some m ∈ Z. Therefore, n2 + 3n+ 4 is even when n is even.

Case 2: Let n be an odd integer. Then n = 2k + 1 for some k ∈ Z.
This means

n2 + 3n + 4 = (2k + 1)2 + 3(2k + 1) + 4

= 4k2 + 4k + 1 + 6k + 3 + 4

= 4k2 + 10k + 8

= 2(2k2 + 5k + 4)

= 2m

for some m ∈ Z. Therefore, n2 + 3n + 4 is even when n is odd.

Do I have to use the same proof method
for each case?

Good question! You are free to mix and
match whichever method is easiest to prove
a particular case. This could be the ones
we’ve seen so far (direct) or the ones we
will see soon (contrapositive, contradiction,
induction).
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Example 6:
For any integer n, n3 − n is even.

Solution:
Proof. We consider two cases.

Case 1: Let n be an even integer. Then n = 2k for some k ∈ Z.
This means

n3 − n = (2k)3 − 2k

= 8k3 − 2k

= 2(4k3 − 2k)

= 2m

for some m ∈ Z. Therefore, n3 − 3n is even when n is even.

Case 2: Let n be an odd integer. Then n = 2k + 1 for some k ∈ Z.
This means

n3 − n = (2k + 1)3 − (2k + 1)

= 8k3 + 12k2 + 6k + 1 − 2k − 1

= 8k3 + 12k2 + 4k

= 2(4k3 + 6k2 + 2k)

= 2m

for some m ∈ Z. Therefore, n3 − n is even when n is odd.
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I feel like I’m doing the same thing for all
my cases.

If you feel like you’re repeating the same
logic, you may use the term Without loss of
generality or (WLOG) and only prove one of
the cases. Be very careful here! When using
the term WLOG, make sure the logic truly is
the same for all cases!

Example 7:
Suppose a, b, c are positive integers and abc is even. Show that

a + b + c ≥ 4.

Solution:
Before proving a + b + c ≥ 4, we need a lemma.
Lemma 1. For positive integers a, b, c. If abc is even, then one of a, b
or c is even.

Proof. Suppose abc is even. Then abc = 2k for some k ∈ N.
Decompose k = k1k2k3. Then abc = (2k1)k2k3 = k1(2k2)k3 =

k1k2(2k3). Therefore, either a, b or c is even.

Now we can prove the actual proposition.

Proof. Let a, b, c be positive integers. Since abc is even, at least
one of a, b, c is even by Lemma 1. Without loss of generality,
assume a is even. Then a ≥ 2 and a + b + c ≥ 2 + 1 + 1 = 4.

Convince yourself that splitting into the three cases: Case 1: a
is even, Case 2: b is even and Case 3: c is even, uses the same
logic sequence in the proof.
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