
Introduction
Lecture 1M page 1

02/12/2024 Philip’s notes

Learning objectives:
2 familiarize yourself with the course objectives: problem-solving!

2 set expectations in class: taking notes, participating, problem sets,

2 set expectations outside class: problem sets, self-grading,

2 identify whether a statement is a proposition,

2 describe some proof terminology: lemma, theorem, corollary.

Welcome to CS 200 :)

I’m glad you’re here and hope you’re ready for a fun semester filled
with puzzles, games and other interesting problems from daily life.

Really! The skills you will develop in this class will be helpful, not
only for your future in computer science, but will also help you solve
problems in the world around you. I promise you will never look at a
chocolate bar, Google Maps, or a deck of cards the same ever again.

1 Course objectives

The primary goal of this course is for you to enhance your pen-and-
paper problem solving skills for computer science applications. But it
isn’t enough to just come up with a solution when solving a problem.
You need to communicate it to your peers and be (hopefully) confi-
dent that your solution is correct. We want you to use mathematical
arguments to support your solutions. Math? I want to study computer science!

Yes! Math is the language of science, so
one of our goals in the course is to develop
the language you need for your future CS
courses. Instead of directly focusing on
programming to solve problems, we’ll focus
on the problem-solving process itself. The
main goal of this course is to make you a
problem solver.

By the way, I like to put cartoons in the
margins of the notes, and I’ve decided to
use Pokémon (which I found royalty-free
here). The one above is Bulbasaur (it isn’t
necessary to know about Pokémon to follow
along with the notes). Please keep an eye
out for them!

. . . and let me know if you have any favorites
(or other cartoon suggestions to use) in our
Intro Form.

1.1 Common coding techniques

I’ve seen a variety of techniques used by both experienced and begin-
ner programmers. The top three dangerous ones are listed below.

• The I don’t even know where to start, so I’ll just wait until I have an
epiphany method: usually results in a lot of stress and late-night
help sessions.

• The I know the answer should be multiplied by 2, so I’ll just multiply
by 2 somewhere method: might work for some program inputs,
but will usually fail for general program inputs.

• The code and hope method: consists of programming-as-you-go
without carefully considering what the goal of the program is.

https://canvas-addict.blogspot.com/2021/05/8-bit-pokemon-sprites-gen-1.html
https://forms.gle/FUnbuSg8s3gyfM3L9


Introduction
Lecture 1M page 2

02/12/2024

Now, let’s add one more to the list:

• The plan, organize, implement, check: this is what we want you to
do! CS 200 will give you the tools to plan your solutions and be
confident that they are correct.

How does this fit in with other courses?

The are other courses in the department that
also give you problem-solving skills, such as
CS 201 (Data Structures), but that is more
focused on implementing the data struc-
tures. In CS 200, we want to focus on the
math behind our solutions.

Here is a more detailed list of objectives that describes what kinds
of tools we will develop to help you solve problems:

• Use mathematical notation for basic mathematical objects such
as sets and functions correctly and appropriately.

• Write clear, concise, and correct proofs using the following tech-
niques: direct proof, induction, contrapositive, proof by contra-
diction, proof by counter example, and proof by cases.

• Analyze function growth and algorithm runtime using asymp-
totic notation and recurrence relations.

• Describe graphs and their properties, prove statements related to
graphs, and understand simple graph algorithms.

• Describe and analyze random events using discrete probability.

2 Topics

Here is a list of topics we will cover in this course. Come back to this
list throughout the semester and make sure that you are familiar with
the concepts as we cover them. Proof by induction

One of the most important techniques you
will learn in this course is how to do a proof
by induction.

2 Proofs:

2 Talking math: theorem, lemma, corollary, propositions, predi-
cates, quantifiers, sets.

2 Techniques: direct, cases, counterexample, contradiction, contra-
positive, induction.

2 Linear algebra: vectors, matrices, proofs, operations.

2 Graphs: edge, vertex, adacency matrix, simple, bipartite, coloring,
trees, breadth-first and depth-first search, relations.

2 Recurrences: linear, divide-and-conquer, calculating sums.

2 Counting: combinations, permutations.

2 Functions: injective, bijective, surjective, O, o, Θ, ω, Ω notation.

2 Probability: event, outcome, sample space, tree method, random
variables, expectation, linearity of expectation.



Introduction
Lecture 1M page 3

02/12/2024

A contract

The course syllabus (here) provides a lot more details as to what to
expect both in and outside of class. Please make sure you review
it before proceeding. Let’s draw up a contract between you and me
(Philip) that we can refer back to throughout the semester.

My promise as an instructor:

• I will create an inclusive, welcoming learning environment, both
in and outside our classroom.

• I will prepare lecture notes that you can use to study the course
material.

• My problem sets and exams will be fair but still challenge you to
apply your knowledge.

• I will grade things as soon as possible to give you feedback on
your work.

• I will hold office hours for asking conceptual questions and clar-
ifications. If you are stuck on a problem, I will try to point you
in the right direction, but will not give you the answer.

Your promise as a student:

• I will make sure that I make time for self-care. Please take care of yourselves!

This includes sleeping, eating, exercising,
whatever you need to do to be YOU both in
and out of the classroom.

• I will take notes and participate in group discussions in a re-
spectful and kind manner.

• I will come to office hours with specific questions, and be mind-
ful of other students that might want to ask questions as well.

• I will keep up with the material by reading the posted lecture
notes and watching the lecture videos (weeks 6-12).

• I will practice applying my knowledge with the in-class prob-
lems, and will look for other problems when I think I need more
practice on a certain topic.

• I will submit my work on time, and let Philip know at least 48

hours in advance if I need an extension.

Signature: date:
Name: Philip Caplan

Signature: date:
Name:

https://csci200s24.github.io/


Introduction
Lecture 1M page 4

02/12/2024

3 What is a proof?

Let’s start our discussion about proofs. You may have seen some
proofs before, maybe when studying geometry in high school (it’s okay
if you didn’t). What’s your definition of a proof? A proof is a method for ascertaining a

truth.

This is a great definition. Let’s generalize it
to a mathematical setting.

Bulbasaur (now evolved into Ivysaur) has a nice idea. A proof is
a method for ascertaining a truth. So we can say that a proof is a
way to say that something is either true or false. This "something" is a
proposition, defined below.

Definition 1. A proposition is a statement that is either true or false.

So here’s a proposition:

Proposition 1. 1 + 1 = 2

which is true. Here’s another one:

Proposition 2. I’m watching you, Wazowski.

Examples of statements that are not propositions might be "What
did you do over the break?" or "Pass the salt, please."

Our goal is to make propositions, and decide whether they are true
or false, using some mathematical arguments. This leads into our def-
inition of a proof.

Definition 2. A mathematical proof is a verification of a proposition by
a chain of logical deductions from a set of axioms.

We’ll look at deductions and axioms soon, but for now just think
of axioms as our assumptions that always hold, and deductions as the
sequence of steps we use (starting with our axioms, and some other
information), to prove something.

But, how do we determine if something is true or false? Some ideas
might be:

• experimentation & observation,

• counterexamples,

• inner conviction (I just know it).

a

b
c

Let’s consider a famous example.

Theorem 1. (Pythagorean theorem) Given a planar right triangle with side
lengths a, b and c – meaning there is one angle of 90◦, which we will take (for
generality) to be opposite the side with length c. Then c2 = a2 + b2.



Introduction
Lecture 1M page 5

02/12/2024

Any ideas on how to prove this? Experimenting with different val-
ues wouldn’t get us very far because we would have to test for an
infinite number of values. Coming up with a counterexample is a bit
tricky here because a counterexample might be useful to prove some-
thing isn’t true. Well, when coming up with a proof, sometimes you
have to think outside the box. In this case, let’s think inside the square.

a

b
c

b

a

b

ab

a

Proof. Consider the square with side length a + b, formed by placing
the same triangle in the arrangement to the right. We know this square
has area (a+ b)2. Note that this also contains a square with side length
c (rotated a little), which has area c2. The area of our triangle is 1

2 ab
and we know that 4 times this area, plus the area of the inner square
should equal the area of the outer square:

4 · 1
2

ab + c2 = (a + b)2

2ab + c2 = a2 + 2ab + b2

c2 = a2 + b2

What is that little box?

It’s common practice to put a little box
(2) on the rightmost side of the page to
demonstrate that you’re done with your
proof. Some people write Q.E.D. instead,
but we’ll use boxes in this course. Make
sure you always write a 2 after your proof!

To explicitly add a 2 in LATEX math mode (un-
less you are using a proof environment),
you can use \Box.

But how did we even know to do that?! Some might argue that
because we were looking for something squared, then area (which has
units of length-squared) might be useful here. But we assumed a few
things about squares and areas. In fact, we were able to derive the
Pythagorean theorem, through some axioms of Euclidean geometry.

Definition 3. An axiom is a proposition that is assumed to be true.

In general, we will assume a set of axioms, and derive more com-
plicated things from them. This might be a theorem (like we just did
with the Pythagorean theorem), a corollary or a lemma. A corollary is a
proposition that follows quite easily from a theorem, whereas a lemma
is a proposition that is useful for proving other propositions. In other
words, a lemma might come before a theorem, whereas a corollary
comes after it. For example,

Corollary 1. The length of the hypotenuse of a right, isosceles triangle (with
the equal side lengths denoted by a) is c =

√
2a.

Proof. By Theorem 1, we know that c2 = a2 + b2. For an isosceles
triangle, b = a, so c =

√
2a.

Here is another famous theorem.

Theorem 2. There are no positive integers x, y, z such that

xn + yn = zn

for n > 2.



Introduction
Lecture 1M page 6

02/12/2024

Looks a lot like the Pythagorean theorem, eh? This is known Conjectured?

A conjecture is a statement whose truth is
still unknown. So technically, it should be
called Fermat’s last conjecture from 1637-
1994, but Fermat’s last theorem after 1994.

as Fermat’s last theorem (conjectured by Pierre de Fermat in 1637),
which was finally proved in 1994 by Andrew Wiles. One thing to note
is the use of positive integers, which leads into our discussion about sets
(soon).


	Course objectives
	Common coding techniques

	Topics
	What is a proof?

