
CSCI 146: Intensive Introduction to Computing

Fall 2025

Lecture 17: Searching and Sorting

1

Python uses sys.maxsize as the maximum size of a container (and

hence maximum index).

On most modern computers, this max size is represented by an integer with 64 bits. So what's

sys.maxsize?

Account for negative indices.

1 bit used for sign.

>>> import sys

>>> sys.maxsize

9223372036854775807

2
63
− 1

2

Representing floating-point numbers.

64-bit floating-point number:

1 bit for sign

11 bits for exponent (offset from some bias)

52 bits for mantissa

>>> 0.1 + 0.2 <= 0.3

False

s

e e0

m

s ∗ 1.m ∗ 2
e−e0

4

What if the list is sorted? Can we use this to our advantage?

Yes: binary search.

8

How do we get sorted lists in the first place? And

what are other applications of sorting?

10

Sorting Algorithm #3: merge_sort.

14

Possible implementation of merge_sort.

 def merge_sort(a_list):

 """

 Sort list using the merge sort

 algorithm returning a new sorted list.

 Args:

 a_list: List to sort

 Returns:

 New sorted list
 """

 if len(a_list) <= 1:

 # Base case: List with single

 # value is already sorted
 return a_list

 else:

 # Recursive case: Split list in half,

 # sort each half then merge

 # the resulting lists
 mid_index = len(a_list) // 2

 left = merge_sort(a_list[:mid_index])

 right = merge_sort(a_list[mid_index:])

 merged = merge(left, right)
 return merged

1

2

3

4

5
6

7

8

9

10
11

12

13

14

15
16

17

18

19

20
21

22

23

24

25
26

def merge(list1, list2):

 """

 Return a sorted list produced from merging

 two sorted lists

 Args:

 list1, list2: Sorted lists to merge

 Returns:

 Sorted, merged, list
 """

 result = []

 index1 = 0

 index2 = 0

 # Iterate each of the lists an item at a time

 while index1 < len(list1) and index2 < len(list2):

 if list1[index1] < list2[index2]:

 # If the current item in list1 is smaller,

 # copy and advance current item in list1
 result.append(list1[index1])

 index1 += 1

 else:

 # Otherwise, do the same in list2

 result.append(list2[index2])
 index2 += 1

 # Append any remaining elements in list1 or list2.

 # Only one of these lists should have any remaining

 # elements, the other slicing operation
 # will produce an empty list

 result += list1[index1:]

 result += list2[index2:]

 return result

1

2

3

4

5
6

7

8

9

10
11

12

13

14

15
16

17

18

19

20
21

22

23

24

25
26

27

28

29

30
31

32

33

34
35

18

See sorting.py (linked in reading) for a

performance comparison.

19

Summary and Reminders

Linear Search: best is , worst is , average is .

Binary Search: best is , worst is , average is .

Selection Sort: best is , worst is , average is .

Insertion Sort: best is , worst is , average is .

Merge Sort: best is , worst is , average is .

Programming Assignment 7 initial due date on Thursday.

Quiz 8 this Friday includes retakes from Quizzes 4 - 7 + new Quiz 8 topics + Midterm 1 retakes of

Questions 6 and Question 7:
Midterm 1 Question 6: "Finding errors"

Midterm 1 Question 7: "Writing functions with sequences"

Only Quiz 8 cheat sheet (linked on calendar) will be allowed for Quiz 8 + Midterm 1 retakes.

O(1) O(n) O(n)
O(1) O(logn) O(logn)
O(n2) O(n2) O(n2)
O(n) O(n2) O(n2)

O(n logn) O(n logn) O(n logn)

21

