
CSCI 146: Intensive Introduction to Computing

Fall 2025

Lecture 11: Tuples and Python's Memory Model

1

Goals for today

Create and use a tuple.

Use tuples to return multiple values from a function.

Describe the Python memory model.

Explain the behavior of references.

Predict how immutable and mutable values referenced by variables will be affected by

assignments, operators, functions and methods.

One operator I forgot to mention about sets: < (strict/proper subset)

>>> set("ab") < set("cba")

True

>>> set("ab") < set("ab")

False

>>> set("ab") <= set("ab")

True

2

Warmup: write a program to count the frequency of words

in"here_comes_the_sun.txt" linked on the website.

Work in pairs?
In VS Code: View -> Extensions, search for LiveShare (by Microsoft) and Install.

ONE person: click on on the LiveShare button at the bottom.

The sharing link is copied to the clipboard: email/text to your partner!

frequency = {} # initialize dictionary

with open("here_comes_the_sun.txt", "r") as file:

 for line in file:

 line = line.strip()

 if line == "":

 continue

 words = line.split()

 for word in words:

 word = word.lower()

 if word in frequency:

 frequency[word] += 1

 else:

 frequency[word] = 1

3

Introducing tuples: an immutable sequence that can hold any type.

Why???

Can't increase in size, so a tuple can represent a fixed collection of data with an

expected structure, e.g. ("October", 15, 2025).

Delimited with parentheses ().

>>> my_tuple = (1, 2, 3, 4)

>>> my_tuple

(1, 2, 3, 4)

>>> another_tuple = ("a", "b", "c", "d")

>>> another_tuple

('a', 'b', 'c', 'd')

>>> my_tuple[0]

1

>>> my_tuple[1]

2

>>> for i in my_tuple:

... print(i)

1

2

3

4

>>> my_tuple[1:3]

(2, 3)

4

We can also "unpack" which is useful for swapping stuff.

Unpacking:

Swapping values:

But tuples are immutable:

>>> var1, var2, var3, var4 = another_tuple

>>> var1

'a'

>>> var4

'd'

>>> x = 10

>>> y = 20

>>> (y, x) = (x, y)

>>> x

20

>>> y

10

>>> my_tuple[0] = 5 # TypeError: 'tuple' object does not support item assignment

>>> my_tuple.append(5) # AttributeError: 'tuple' object has no attribute 'append'

5

Back to our frequency analysis: how can we list the most frequent

words in descending order?

build up a list of word pairs from the dictionary we created

word_pairs = []

for word, count in frequency.items():

 word_pairs.append((count, word)) # note the use of ()

sort in descending order

Python will compare pairs lexicographically (i.e. count first, then word)

word_pairs.sort(reverse=True)

for count, word in word_pairs:

 print(word + " appears " + str(count) + " times")

6

Be careful when trying to modify a container (e.g. dict) while

iterating.

This is NOT okay!

But this is okay...

Why??

In the first example, the iteration variable depends on the dictionary and it becomes

invalidated when the dictionary is modified.

In the second example, the iteration sequence is a snapshot of the keys and decoupled

from the dictionary.

d = { 1 : "one", 2 : "two", 3 : "three" }

for key in d:

 if key == 2:

 d.pop(key) # RuntimeError: dictionary changed size during iteration

d = { 1 : "one", 2 : "two", 3 : "three" }

for key in [1, 2, 3]:

 if key == 2:

 d.pop(key)

7

In any case, it would be better to work with a copy of a dictionary if

we need to modify it when looping.

...but we also need to be careful with copying...

Almost everything in Python is an object (instance of a class, i.e. a house made from a

blueprint).

Objects take up memory in our computers.

Python keeps track of the references to these objects (like the address of a house built

from a blueprint).

8

Tracking references of our objects: immutable objects

Investigate the id() function!

>>> z = 2 # re-assignment creates a new object

>>> x = 1

>>> y = x # now x and y both "point" to the same object

>>> x = z

>>> x = "hello"

>>> y = x

>>> y = "bye"

>>> x

"hello"

>>> y

"bye"

9

Tracking references of our objects: mutable objects

Investigate the id() function!

>>> a = [1, 2, 3]

>>> b = a

>>> a[1] = 4

>>> a

[1, 4, 3]

>>> b

[1, 4, 3]

>>> b = [6, 7, 8] # creates a new list object

>>> a

[1, 2, 3]

>>> b

[6, 7, 8]

10

Parameters as references

def aliasing(param):

 param[1] = 4

a = [1, 2, 3]

aliasing(a)

a # a will be [1, 4, 3]

def my_function(a):

 a = [0]*5

 a[0] = 6

x = [1, 2, 3, 4, 5]

my_function(x)

x # x will be [1, 2, 3, 4, 5]

11

Shallow versus deep copying.

Slicing creates a shallow copy: mutable items in the list are not deep-copied.

If we really want a "deep" copy, we would need to use the copy module.

>>> x = [1, 2, 3, 4, 5]

>>> y = x[0:2]

>>> y

[1, 2]

>>> y[0] = 6

>>> y

[6, 2]

>>> x

[1, 2, 3, 4, 5]

>>> y = x[:]

>>> y[4] = 12

>>> y

[1, 2, 3, 4, 12]

>>> x

[1, 2, 3, 4, 5]

>>> x = [1, 2, [3, 4], 5, 6]

>>> y = x[:]

>>> y[2][0] = 7

>>> y[3] = 8

>>> y

[1, 2, [7, 4], 8, 6]

>>> x

[1, 2, [7, 4], 5, 6]

12

Question 1: After the code below executes, what is the value of a?​

a = [[1, 2, 3], [4, 5]]​

b = a[:]​

b.append(8)

A. [[1, 2, 3], [4, 5]]​

B. [[1, 2, 3], [4, 5], 8]​

C. [[1, 2, 3], [4, 5, 8]]​

D. [[1, 2, 3], [4, 5], [8]]​

13

Question 2: After the code below executes, what is the value of a?​

a = [[1, 2, 3], [4, 5]]​

b = a[:]​

b[1].append(8)

A. [[1, 2, 3], [4, 5]]​

B. [[1, 2, 3], [4, 5], 8]​

C. [[1, 2, 3], [4, 5, 8]]​

D. [[1, 2, 3], [4, 5], [8]]​

14

Exercise: here is a function that inserts a value b after every

occurence of a in a list called x.

def insert_after(x, a, b):

 """

 Return a new list consisting of all elements from x,

 plus a copy of b after each occurrence of a.

 (list of int, int, int) -> list of int

 >>> insert_after([3, 4, 5], 3, 10)

 [3, 10, 4, 5]

 """

 new_x = []

 for element in x:

 new_x.append(element)

 if element == a:

 new_x.append(b)

 return new_x

Rewrite the function to insert the values in-place (it should not return a list

anymore).

15

Possible solution.

def insert_after2(x, a, b):

 """

 Insert b after each occurrence of a in x.

 (list of int, int, int) -> NoneType

 >>> x = [3, 4, 5]

 >>> insert_after2(x, 3, 10)

 >>> x

 [3, 10, 4, 5]

 """

 i=0

 while i < len(x):

 if x[i] == a:

 x.insert(i + 1, b)

 i += 1

 i += 1

16

Summary and Reminders

BE CAREFUL WITH MUTABLE OBJECTS (1) assigned to variables or (2) passed to functions.

Programming Assignment 5 initially due tomorrow (can work and submit in pairs).

Programming Assignment 3 final due date tomorrow.

Use "Regrade Requests" form on the website. See Gradescope comments by clicking on Code.

17

