Middlebury

CSCI 146: Intensive Introduction to Computing
Fall 2025

Lecture 11: Tuples and Python's Memory Model

Goals for today

e Create and use a tuple.

e Use tuples to return multiple values from a function.
e Describe the Python memory model.

e Explain the behavior of references.

e Predict how immutable and mutable values referenced by variables will be affected by
assignments, operators, functions and methodes.

One operator | forgot to mention about sets: < (strict/proper subset)

>>> set("ab") < set("cba")
True

>>> set("ab") < set("ab")

False

>>> set("ab") <= set("ab")
True

Warmup: write a program to count the frequency of words
in"here comes the sun.txt" linked on the website.

Work in pairs?

e INVS Code:View -> Extensions,searchforLiveShare (by Microsoft) and Install.
e ONE person:click on on the LiveShare button at the bottom.

e Thesharing link is copied to the clipboard: email/text to your partner!

frequency = {} # initialize dictionary
with open("here comes the sun.txt", "r") as file:
for line in file:
line = line.strip()
if line == ""
continue
words = line.split()
for word in words:
word = word.lower ()
if word in frequency:
frequency[word] += 1
else:
frequency[word] = 1

Introducing tuples: an immutable sequence that can hold any type.
Why???

e Can'tincreaseinsize,so a tuple can represent a fixed collection of data with an
expected structure, e.g. ("October", 15, 2025).
e Delimited with parentheses ().

>>> my tuple = (1, 2, 3, 4)

>>> my tuple

(1, 2, 3, 4)

>>> another_tuple — (n all , |Ib|l , IIC n , lldll)

>>> another tuple
(‘a'y 'b’, 'c’, 'd")
>>> my tuple[0]

1

>>> my tuple[1l]

2

>>> for 1 in my tuple:
print (i)

\Y,

>> my tuple[1l:3]
2, 3)

~ VB WN P
[]

We can also "unpack" which is useful for swapping stuff.
Unpacking:

>>> varl, var2, var3, var4 = another tuple
>>> varl

lal
>>> vard

g
Swapping values:

>>> x = 10
>>> y = 20

>>> (¥, X) = (%X, Y)
>>> x

20

>>> y

10

But tuples are immutable:

>>> my tuple[0] = 5 # TypeError: 'tuple' object does not support item assignment
>>> my tuple.append(5) # AttributeError: 'tuple' object has no attribute 'append'

Back to our frequency analysis: how can we list the most frequent
words in descending order?

build up a list of word pairs from the dictionary we created
word pairs = []
for word, count in frequency.items():

word pairs.append((count, word)) # note the use of ()

sort in descending order
Python will compare pairs lexicographically (i.e. count first, then word)
word pairs.sort(reverse=True)
for count, word in word pairs:
print(word + " appears " + str(count) + " times")

Be careful when trying to modify a container (e.g. dict) while
iterating.

This is NOT okay!

d — { 1 . "One", 2 . "tWO", 3 o nthreell }
for key in d:
if key == 2:

d.pop(key) # RuntimeError: dictionary changed size during iteration

But this is okay...

d={1: "one", 2 : "two", 3 : "three" }
for key in [1, 2, 3]:
if key == 2:
d.pop(key)
Why??

e Inthe first example, the iteration variable depends on the dictionary and it becomes

invalidated when the dictionary is modified.
e Inthe second example, the iteration sequence is a snapshot of the keys and decoupled

from the dictionary.

In any case, it would be better to work with a copy of a dictionary if
we need to modify it when looping.

...but we also need to be careful with copying...

e Almost everythingin Python is an object (instance of a class, i.e. a house made from a
blueprint).

e Objects take up memory in our computers.

e Python keeps track of the references to these objects (like the address of a house built
from a blueprint).

Tracking references of our objects: immutable objects

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>> x

"hello™
>>> y

llbye n

2 # re-assignment creates a new object

1

X # now X and y both "point" to the same object
Z

"hello"

X

"bye"

RK X XK X N

Investigate the id () function!

Tracking references of our objects: mutable objects

>>>
>>>
>>>
>>>

[1,
>>>

[1,
>>>
>>>

[1,
>>>

~
i | I |
ed
Il
1S

=
W

3]

I
~
(o))}

, 7, 8] # creates a new list object

~N O MDY OO0 Y O OO
w

-

~
(@)}
~

81]

Investigate the id () function!

10

def aliasing(param):
param[l] = 4

a=1[1, 2, 3]

aliasing(a)

a # a will be [1, 4, 3]

def my function(a):
a = [0]*5
a[0] = 6
x =11, 2, 3, 4, 5]
my function(x)
x # x will be [1, 2, 3,

4,

Parameters as references

o]

11

Shallow versus deep copying.

e Slicing creates a shallow copy: mutable items in the list are not deep-copied.
e |fwereally want a "deep" copy, we would need to use the copy module.

>>> x
>>> vy
>>> vy
[1, 2]
>>> y[0] = 6
>>> vy

[6, 2]

>>> x

(1, 2, 3, 4, 5]
>>> y = x[:]

(1, 2, 3, 4, 5]
xX[0:2]

>>> y[4] = 12

>>> vy

[1, 2, 3, 4, 12]

>>> X

[1, 2, 3, 4, 5]

>>> x = [1, 2, [3, 4], 5, 6]
>>> y = x[:]

>>> y[2][0] = 7

>>> y[3] = 8

>>> vy

(1, 2, (7, 41, 8, 6]
>>> X

(1, 2, [7, 4], 5, 6]

Question 1: After the code below executes, what is the value of a?

(i, 2, 31, [4, 5]]
al]
b.append(8)

Alllr1, 2, 31, [4, 5]1]
B.[[1, 2, 31, [4, 5], 8
C.[[1, 2, 31, [4, 5, 8]
D.[[1, 2, 31, [4, 5], [8]]

Question 2: After the code below executes, what is the value of a?

a=[[1, 2, 3], [4, 5]]

b = a[:]

b[1l].append(8)

A.[[1, 2, 3], [4, 5]]
B.[[1, 2, 3], [4, 5], 8.
cC.rri, 2, 31, [4, 5, 8]
D. ([, 2, 3], [4, 5], [8]]

Exercise: here is a function that inserts a value b after every
occurence of a in a list called x.

def insert after(x, a, b):

Return a new list consisting of all elements from x,
plus a copy of b after each occurrence of a.

(list of int, int, int) -> list of int

>>> insert after([3, 4, 5], 3, 10)
[3, 10, 4, 5]
new x = []
for element in x:

new x.append(element)

1f element ==

new x.append(b)

return new X

Rewrite the function to insert the values in-place (it should not return a list
anymore).

15

Possible solution.

def insert after2(x, a, b):

Insert b after each occurrence of a in Xx.
(list of int, int, int) -> NoneType

>>> x = [3, 4, 5]
>>> insert after2(x, 3, 10)
>>> x
[3, 10, 4, 5]
i=0
while 1 < len(x):
1if x[1] == a:
X.insert(i + 1, b)
i +=1
i4= 1

16

Summary and Reminders

e BE CAREFUL WITH MUTABLE OBJECTS (1) assigned to variables or (2) passed to functions.

e Programming Assignment 5 initially due tomorrow (can work and submit in pairs).

e Programming Assignment 3 final due date tomorrow.

e Use "Regrade Requests" form on the website. See Gradescope comments by clicking on Code.

-l . .
ER EE BER Il BEE ©EBR
Al EE NN 1 T 1 AN EN HER
EEE | | | EEE

