Middlebury

CSCI 146: Intensive Introduction to Computing
Fall 2025

Lecture 10: Sets and Dictionaries

Goals for today

e Explain when sets are used

e Describe sets as unordered unique collections of objects of arbitrary type

e (Create aset

e Explain and use functions, methods and operators on sets including adding, deleting,
membership, etc.

e Explain the properties of different data structures

e Explain when dictionaries are used

e Describe dictionaries as a key-value store

e Create adictionary

e Explain and use functions, methods and operators on dictionaries including adding,
indexing, deleting, etc.

Change in coursework: there will be ONE Test Project released in Week 11 (not two).

Motivation: imagine you had a 1ist called mylist and wanted to
know if x wasinmylist.

def contains(mylist, x):
for item in mylist:
if item == x:
return True
return False

How long would this take if my1ist had 100 items and each item == xchecktook1
second?

Introducing sets: a data structure to store unordered, unique items.

>>> help(set)

>>> s = get() # uses the set "initializer" to create an empty set
>>> g = {1, 2, 3, 4} # delimited with curly braces

>>> s.add(5)

>>> gs.add(2)

>>> get("abcd") # uses initializer that accepts "iterable"

>>> set("abcda")

Other methods (some mutate the set, some don't):

e add: Mutate

e clear : Mutate

e union: Non-mutating (can also use | operator)

e update: Mutating (update is effectively a union operation)

e intersection:Non-mutating (can also use & operator)

e intersection update:Mutate

e difference:Non-mutating (can also use - operator)

e difference update:Mutate

e symmetric difference:Non-mutating (can also use " operator).

Membership can be checked with in (as with 1ists and strings).

A mini note about set ().

e This uses the "initializer" (constructor in other programming languages) which creates
an instance of the set class.

oz ’
EER EE ER EE EE &N

Examples with set operators.

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # duplicates have been removed

{'orange', 'banana', 'pear', 'apple'}

>>> 'orange' in basket # fast membership testing

True

>>> 'crabgrass' in basket
False

>>> a = set('abracadabra')
>>> b set('alacazam')

>>> a # unique letters in a

{lal, |r|, lbl, 'C', ldl}

>>> g - b # letters in a but not in b
{lrl, ldl’ lbl}

>>> a | b # letters in a or b or both
{lal, lcl’ lrl, ldl’ lbl, lml’ IZI, lll}
>>> g & b # letters in both a and b

{Iall ICI}

>>> a ~ b # letters in a or b but not both
{lrl, |d|, lbl, Im|, IZI’ Ill}

Question 1: Which of the following is equivalent to the value
of the set s?

>>> s = set("abcabc")

A. {"abcabc"}

B. {"abc""abc"}

C. {"a",)'b","c""a""'b","c"}
D. {"a","b","c"}

E. {"abc"}

Question 2: Which of the following produces the same value
for € (including type) as the code below?

[1, 2,@
Q 4,

[]

or val in a:

if val 1in b:
c.append(val)

= set(a + b) S 53} — [3]
list(set(a) & set(b))

list(set(a) | set(b))
set(a) & set(b)
list(a & b)

a
b
C
.f:

N = 6 W e
n 0 oafalo
Il

QL7777 A+ -0OBFTO0D O .

Why not a 1ist? Performance for operators like "contains"
(membership).

e Butwe lose ordering (maybe that's okay depending on the application).
e Maybe we want the uniqueness property.

e Can't"index" into a set, but we can still iterate.

S — {Ilall, IIbII, llcll’ ||d||}
for item in s:
print(s)

Runlist versus set.py.

2.0 == st
== Set

1.5

1.0

0.5

0.0

20000 40000 60000 80000

Size

Exercise: determine the frequency of each letter below.
[|a" |b‘l IC" 'b.' lc.' Ib.' 'a‘l la" le.I .d.l

TT\‘?)«*K&XK’KX

]

s B ELA
IR R
\c\: H
\el: |
At 1l

Co NP A A W B 4 &+ -8B~ 00® .~

Dictionaries allow us to store key-value pairs.

e Also known as "maps" or "associative arrays".

e Dictionary literal delimited by curly-braces.

e Caninitialize dictionary (but not set) with {}.

e Can alsoinitialize empty dictionary withdict ().

>> d = { 5: 1, 6: 2 }

>>> d

{5: 1, 6: 2}

>>> d[5]

1

>>> d[6]

2

>>> d[1]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 1

>>> d.get(l, 6)

6

>>> d.get(5, 6)

1

>>> d[3] = 7

>>> d

{3: 7, 5: 1, 6: 2}

Question 3: Which of the following is best suited for a

dictionary instead of a list?

A

B. T
C.T

D

. The order in which people finish a race.

ne ingredients necessary for a recipe.

ne names of world countries and their capital cities.

. 50 random integers.

12

Question 4: What is the dictionary created by the code below?

>>> d = {3:4}
>>> d[5] d.get (4, 8)
>>> d[4] d.get(3, 9)

A. {3:4, 5:8, 4:9}
B./[{3:4, 5:8, 4:4}
C. {3:4, 5:4, 4:3}

D. This code has an error.

13

Question 5: What is the dictionary created by the code below?

>>> d = {1:5}
>>> d[2] = d[1]
>>> d[4] = d[3]

A. {1:5, 2:5}
B. {1:5, 2:1}
C. {1:5, 2:5, 4:None}

D. This code has an error.

14

Iterating through dictionaries.

e Use .keys () toretrieve keys.
e Use .items () toretrieve key-value pairs.

for k in d:
print (k)

for k in d.keys():
print (k)

for item in d.items():
print(item)

for k, v in d.items():
print(k, v)

15

Summary and Reminders

e Programming Assignment 5 due Thursday (can work and submit in pairs).
e Tuples next time.

Type Ordered Mutable Mutable Typical (but not only) Usage
Values

List Yes Yes Yes Ordered collection of variable
length (often homogenous)

Set No Yes No Membership/Set operations

Tuple Yes No Yes Heterogeneous (ordered)
collection of fixed length

Dictionary VYes-ish Yes Yes (but Key ->Value lookup

not keys)

16

