
CSCI 146: Intensive Introduction to Computing

Fall 2025

Lecture 10: Sets and Dictionaries

1

Goals for today

Explain when sets are used

Describe sets as unordered unique collections of objects of arbitrary type

Create a set

Explain and use functions, methods and operators on sets including adding, deleting,

membership, etc.

Explain the properties of different data structures

Explain when dictionaries are used

Describe dictionaries as a key-value store

Create a dictionary

Explain and use functions, methods and operators on dictionaries including adding,

indexing, deleting, etc.

Change in coursework: there will be ONE Test Project released in Week 11 (not two).

2

Motivation: imagine you had a list called mylist and wanted to

know if x was in mylist.

How long would this take if mylist had 100 items and each item == x check took 1

second?

def contains(mylist, x):
 for item in mylist:
 if item == x:
 return True
 return False

3

Introducing sets: a data structure to store unordered, unique items.

Other methods (some mutate the set, some don't):

add: Mutate

clear : Mutate

union: Non-mutating (can also use | operator)

update: Mutating (update is effectively a union operation)

intersection : Non-mutating (can also use & operator)

intersection_update : Mutate

difference : Non-mutating (can also use - operator)

difference_update : Mutate

symmetric_difference: Non-mutating (can also use ^ operator).

Membership can be checked with in (as with lists and strings).

>>> help(set)
>>> s = set() # uses the set "initializer" to create an empty set
>>> s = {1, 2, 3, 4} # delimited with curly braces
>>> s.add(5)
>>> s.add(2)
>>> set("abcd") # uses initializer that accepts "iterable"
>>> set("abcda")

4

A mini note about set().

This uses the "initializer" (constructor in other programming languages) which creates

an instance of the set class.

5

Examples with set operators.

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b # letters in a or b or both
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # letters in both a and b
{'a', 'c'}
>>> a ^ b # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}

6

Question 1: Which of the following is equivalent to the value

of the set s?

>>> s = set("abcabc")

A. {"abcabc"}

B. {"abc","abc"}

C. {"a","b","c","a","b","c"}

D. {"a","b","c"}

E. {"abc"}

7

Why not a list? Performance for operators like "contains"

(membership).

But we lose ordering (maybe that's okay depending on the application).

Maybe we want the uniqueness property.

Can't "index" into a set, but we can still iterate.

Run list_versus_set.py.

s = {"a", "b", "c", "d"}

for item in s:

 print(s)

9

Dictionaries allow us to store key-value pairs.

Also known as "maps" or "associative arrays".

Dictionary literal delimited by curly-braces.

Can initialize dictionary (but not set) with {}.

Can also initialize empty dictionary with dict().

>>> d = { 5: 1, 6: 2 }
>>> d
{5: 1, 6: 2}
>>> d[5]
1
>>> d[6]
2
>>> d[1]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 1
>>> d.get(1, 6)
6
>>> d.get(5, 6)
1
>>> d[3] = 7
>>> d
{3: 7, 5: 1, 6: 2}

11

Question 3: Which of the following is best suited for a

dictionary instead of a list?

A. The order in which people finish a race.

B. The ingredients necessary for a recipe.

C. The names of world countries and their capital cities.

D. 50 random integers.

12

Question 4: What is the dictionary created by the code below?

>>> d = {3:4}

>>> d[5] = d.get(4, 8)

>>> d[4] = d.get(3, 9)

A. {3:4, 5:8, 4:9}

B. {3:4, 5:8, 4:4}

C. {3:4, 5:4, 4:3}

D. This code has an error.

13

Question 5: What is the dictionary created by the code below?

>>> d = {1:5}

>>> d[2] = d[1]

>>> d[4] = d[3]

A. {1:5, 2:5}

B. {1:5, 2:1}

C. {1:5, 2:5, 4:None}

D. This code has an error.

14

Iterating through dictionaries.

Use .keys() to retrieve keys.

Use .items() to retrieve key-value pairs.

for k in d:
 print(k)

for k in d.keys():
 print(k)

for item in d.items():
 print(item)

for k, v in d.items():
 print(k, v)

15

Summary and Reminders

Programming Assignment 5 due Thursday (can work and submit in pairs).

Tuples next time.

Type Ordered Mutable Mutable

Values

Typical (but not only) Usage

List Yes Yes Yes Ordered collection of variable

length (often homogenous)

Set No Yes No Membership/Set operations

Tuple Yes No Yes Heterogeneous (ordered)

collection of fixed length

Dictionary Yes-ish Yes Yes (but

not keys)

Key -> Value lookup

16

