Middlebury

CSCI 146: Intensive Introduction to Computing
Fall 2025

Lecture 8: while loops

Goals for today

e Use relational operators to compare values.

e Describe the execution of for and while loops and differentiate between them.

e Usebreak and continue keywords to further control iterative algorithms.

e Appropriately choose between for and while loops for a computational problem.

Note that we can also use non-bool variables as conditions
(but | don't recommend this).

if "a string?":
print("Do I get executed?")

o "falsy" values: False, 0, 0.0, None, empty sequences (" ", [])
e "truthy" values: everything else

Recall a question from lastclass:a == b or a ==
isnotthesameasa == b or 5 (i.e.==isn'tdistributive).

What about?a == (b or 5)

Python (and other programming languages) will "short-circuit" your
conditionals, so be careful!

def 1 really want this function to be called():
print ("WHY WON'T THIS PRINT")

1if True or 1 really want this function to be called():
print("oh well")

1f False and i1 really want this function to be called():
print("this won't print either, the conditional is already false')

00O J o Ol s WD K

The code above only prints "oh well".

We can also compare strings, which is donein
lexicographic order (alphabetical by character).

Main idea:

e Compare first character, if not the same, return result of < between characters.

e Compare second character, if not the same, return result of < between characters.
e ...continue comparing characters ...

e Ifoneisasubstring of another, itis "less than" the other.

" " " " 97 141 61 01100001 a a Lowercase a
1 >>> Aardvark < Zebra 08 142 62 01100010 b b Lowercase b
99 143 63 01100011 [c Lowercase ¢
1] " 1] [1] '
2 >>> aardvark < Zebra 100 144 64 01100100 d d Lowercase d
101 145 65 01100101 e e Lowercase e
102 146 66 01100110 f f Lowercase f
103 147 67 01100111 g g Lowercase g
104 150 68 01101000 h h Lowercase h
105 151 69 01101001 i i Lowercase i
106 152 6A 01101010 j j Lowercase j
Investigate the built-in ord A B
g 108 154 6C 01101100 | l Lowercase |
109 155 6D 01101101 m m Lowercase m

[
fu n Ctl O n ' 110 156 6E 01101110 n n Lowercase n
° m 157 6F 01101111 o o Lowercase o
12 160 70 01110000 p p Lowercase p

113 161 71 01110001 q q Lowercase q
14 162 72 01110010 r r Lowercase r
15 163 73 0111001 s s Lowercase s
116 164 74 01110100 t t Lowercase t
17 165 75 01110101 u u Lowercase u
118 166 76 01110110 v v Lowercase v
19 167 77 01110111 w w Lowercase w
120 170 78 01111000 X x Lowercase x
121 171 79 01111001 y y Lowercase y

122 172 7A 01111010 z z Lowercase z

while loops are useful for iterating when we don't
know how many iterations to do.

while condition:
statementl
statement?2

statement3

statementd

while conditionl:
statementl
statement?2
1f condition2:
break
statement3
statementd

Make sure your while loops terminate!
Iterations should eventually reach your exit condition.

Question 1: What does this code print?

n = 3
while n > 0:
1if (n == 5):

n = -99
print (n)
n =n+ 1
A. B.
3 3
4 4
5
C. D.
3 3
4 4
-99 5

-99

Question 2: creating a valid password

A valid password is one that is length 5 and starts with "xvy". A valid password
should terminate the loop. Which of these implements that specification? Note,
the input function prints its argument as a prompt and returns whatever the
user types as a string (after the user hits enter).

1 while True:
2 s = input("Enter a password: ")
3 if len(s) == 5 and s[:2] == 'xy':
4 break
A.
1 s = input("Enter a password: ")
2 while len(s) == 5 and s[:2] == 'xy':
3 s = input ("Enter a password: ")

B.
C. Both A and B are correct.

D. Neither A or B are correct.

Question 3: Will this loop terminate, be guaranteed to be an infinite
loop or will it depend?

a=2~0

i =20

while 1 < 10:
a=a+ 1

B W N -

1. Terminate or not execute.
2. Infinite loop.

3. Depends.

4. SyntaxError

Example: guessing game

1. Start by investigating what the current game is doing.

2. Make a copy of the game function called number guessing game2 and refactor the code to
remove the correct variable.

3. Make a copy of the game function called number guessing game3 and refactor the code to
remove the correct variable and not use a break keyword.

10

for loops versus while loops: when to pick one
over the other?

1 for i in range(2, 11, 2): 1 1 =2
2 print (i) 2 while i <= 10:
3 print (i)
4 i += 2
Another way?
1 for 1 in range(2, 1l1l):
2 if 1 8 2 ==
3 continue
4 print (1)

e Picka for loop if you know the number of iterations (e.g. from a variable or a constant) beforehand
AND the loop variable increments in the same way on each iteration.
e Pickawhile loopif(1)youdon't know the number of iterations beforehand OR (2) the loop variable

might update differently on each iteration.

11

A better way to program our snake game.

def game over():

Determines if the game is over.
Here, we just determine if the player is on the screen, but other options could be:
1. Use a time limit on the game.

2. Check if the snake somehow intersected itself, which may not be allowed.
return not inbounds/()

00O J O U1l s WIN K

1 while not game over():
2 co

12

Exercise: write a function called diy sqrt to calculate /z using 5“ ® '5-&'-;‘
Heron's method. | W—
L -
G) - T X= 6

Start with yg = @ and update y,,+1 = % (yn + =&) until it "converges".

yll

« How will you know when the answer y,, is close to the answer?
« Think about writing a condition that expresses this.
« Then write the body of a loop (and decideon a for orwhile loop).

] TOLERANCE = le-12 # scientific notation for 10 ** (=12)
2 def diy sqrt(x):

4 Calculates the square root of some number x using Heron's method.

Args:
X: number to calculate the square root of. MUST BE >= 0.

Returns:
Square~-root of Xx.

ynm=x

while abs(y n * y n - X) > TOLERANCE:
14 yn=20,5* (yn+x/yn)
' return y n

Another method: write a function called diy sqrt2 to calculate VT
using the Bakhshali method.

Start with yg = @ and iteratively calculate:

_ L7Yn
l.a, = S

2
a,

3. Ynt+l = Zpt1 — 22ni1
4. Then y,, .1 becomes the guess for the next iteration until convergence.

1 TOLERANCE = le-12 # scientific notation for 10 ** (-12)
2 def diy sqrt2(x):
3 mimn

4 Calculates the square root of some number x using the Bakhshali method.
5

6 Args:

7 X: number to calculate the square root of. MUST BE >= 0.

8

9 Returns:

10 Square-root of x.

11 e

12 yn = X
13 while abs(yn * yn - x) > TOLERANCE:

14 an = (X - yn * yn) / (2 * yn)
15 yn += an

16 yn -= an * an / (2 * yn)

17 return yn

14

Reminders

e Midterm 1 on Thursday October 9th at 7:30pm. Please email me if you have a conflict or accommodations.
Covers material through this week.

e Have a look at feedback on Programming Assignment 2 (resubmit until Thursday October 9th).

e Programming Assignment 1 due tomorrow (final submission).

e Programming Assignment 3 due tomorrow (initial submission).

e Quiz 4 on Friday with retakes of previous quiz questions.

e Help hours: see go/smith (Smith Gakuya, ASI) and go/cshelp.

15

