
CSCI 146: Intensive Introduction to Computing

Fall 2025

Lecture 8: while loops

1

Goals for today

Use relational operators to compare values.

Describe the execution of for and while loops and differentiate between them.

Use break and continue keywords to further control iterative algorithms.

Appropriately choose between for and while loops for a computational problem.

2

Note that we can also use non-bool variables as conditions

(but I don't recommend this).

if "a string?":

print("Do I get executed?")

"falsy" values: False, 0, 0.0, None, empty sequences ("", [])

"truthy" values: everything else

Recall a question from last class: a == b or a == 5

is not the same as a == b or 5 (i.e. == isn't distributive).

What about? a == (b or 5)

3

Python (and other programming languages) will "short-circuit" your

conditionals, so be careful!

def i_really_want_this_function_to_be_called():

 print("WHY WON'T THIS PRINT")

if True or i_really_want_this_function_to_be_called():

 print("oh well")

if False and i_really_want_this_function_to_be_called():

 print("this won't print either, the conditional is already false")

1

2

3

4

5

6

7

8

if True or i_really_want_this_function_to_be_called():

def i_really_want_this_function_to_be_called():1

 print("WHY WON'T THIS PRINT")2

 3

4

 print("oh well")5

 6

if False and i_really_want_this_function_to_be_called():7

 print("this won't print either, the conditional is already false")8

if True or i_really_want_this_function_to_be_called():

 print("oh well")

def i_really_want_this_function_to_be_called():1

 print("WHY WON'T THIS PRINT")2

 3

4

5

 6

if False and i_really_want_this_function_to_be_called():7

 print("this won't print either, the conditional is already false")8

if False and i_really_want_this_function_to_be_called():

def i_really_want_this_function_to_be_called():1

 print("WHY WON'T THIS PRINT")2

 3

if True or i_really_want_this_function_to_be_called():4

 print("oh well")5

 6

7

 print("this won't print either, the conditional is already false")8

def i_really_want_this_function_to_be_called():

 print("WHY WON'T THIS PRINT")

if True or i_really_want_this_function_to_be_called():

 print("oh well")

if False and i_really_want_this_function_to_be_called():

 print("this won't print either, the conditional is already false")

1

2

3

4

5

6

7

8

The code above only prints "oh well".

4

We can also compare strings, which is done in

lexicographic order (alphabetical by character).

Main idea:
Compare first character, if not the same, return result of < between characters.

Compare second character, if not the same, return result of < between characters.

... continue comparing characters ...

If one is a substring of another, it is "less than" the other.

>>> "Aardvark" < "Zebra"

>>> "aardvark" < "Zebra"

1

2

Investigate the built-in ord

function!

5

while loops are useful for iterating when we don't

know how many iterations to do.

while condition:

 statement1
 statement2

statement3

statement4

while condition1:

 statement1

 statement2

 if condition2:

 break
statement3

statement4

Make sure your while loops terminate!

Iterations should eventually reach your exit condition.

6

Question 1: What does this code print?

n = 3

while n > 0:

 if (n == 5):

 n = -99

 print(n)

 n = n + 1

A.

3

4

B.

3

4

5

C.

3

4

-99

D.

3

4

5

-99

7

Question 2: creating a valid password

A valid password is one that is length 5 and starts with "xy". A valid password

should terminate the loop. Which of these implements that specification? Note,

the input function prints its argument as a prompt and returns whatever the

user types as a string (after the user hits enter).

A.

while True:

 s = input("Enter a password: ")

 if len(s) == 5 and s[:2] == 'xy':

 break

1

2

3

4

B.

s = input("Enter a password: ")

while len(s) == 5 and s[:2] == 'xy':

 s = input ("Enter a password: ")

1

2

3

C. Both A and B are correct.

D. Neither A or B are correct.

8

Question 3: Will this loop terminate, be guaranteed to be an infinite

loop or will it depend?

a = 0

i = 0

while i < 10:

 a = a + 1

1

2

3

4

1. Terminate or not execute.

2. Infinite loop.

3. Depends.

4. SyntaxError

9

Example: guessing game

1. Start by investigating what the current game is doing.

2. Make a copy of the game function called number_guessing_game2 and refactor the code to

remove the correct variable.

3. Make a copy of the game function called number_guessing_game3 and refactor the code to

remove the correct variable and not use a break keyword.

10

for loops versus while loops: when to pick one

over the other?

for i in range(2, 11, 2):

 print(i)

1

2

i = 2

while i <= 10:

 print(i)

 i += 2

1

2

3

4

Another way?

for i in range(2, 11):

 if i % 2 == 1:

 continue

 print(i)

1

2

3

4

Pick a for loop if you know the number of iterations (e.g. from a variable or a constant) beforehand

AND the loop variable increments in the same way on each iteration.

Pick a while loop if (1) you don't know the number of iterations beforehand OR (2) the loop variable

might update differently on each iteration.

11

A better way to program our snake game.

def game_over():

 """
 Determines if the game is over.

 """
 # Here, we just determine if the player is on the screen, but other options could be:

 # 1. Use a time limit on the game.

 # 2. Check if the snake somehow intersected itself, which may not be allowed.
 return not inbounds()

1

2
3

4
5

6

7
8

while not game_over():

 ...

1

2

12

Another method: write a function called diy_sqrt2 to calculate

using the Bakhshali method.

Start with and iteratively calculate:

1.

2.

3.

4. Then becomes the guess for the next iteration until convergence.

√x

y0 = x

an =
x−y2n
2yn

zn+1 = yn + an

yn+1 = zn+1 −
a2
n

2zn+1

yn+1

TOLERANCE = 1e-12 # scientific notation for 10 ** (-12)

def diy_sqrt2(x):

 """
 Calculates the square root of some number x using the Bakhshali method.

 Args:

 x: number to calculate the square root of. MUST BE >= 0.

 Returns:

 Square-root of x.

 """

 yn = x

 while abs(yn * yn - x) > TOLERANCE:
 an = (x - yn * yn) / (2 * yn)

 yn += an

 yn -= an * an / (2 * yn)

 return yn

1

2

3
4

5

6

7

8
9

10

11

12

13
14

15

16

17

14

Reminders

Midterm 1 on Thursday October 9th at 7:30pm. Please email me if you have a conflict or accommodations.

Covers material through this week.

Have a look at feedback on Programming Assignment 2 (resubmit until Thursday October 9th).

Programming Assignment 1 due tomorrow (final submission).

Programming Assignment 3 due tomorrow (initial submission).

Quiz 4 on Friday with retakes of previous quiz questions.

Help hours: see go/smith (Smith Gakuya, ASI) and go/cshelp.

15

