
CSCI 146: Intensive Introduction to Computing

Fall 2025

Lecture 6: Sequences II (Methods)

1

Goals for today

Use sequence functions on strings and lists.

Use sequence, string and list methods to transform those objects.

Differentiate between mutable and immutable types.

Predict how immutable and mutable values referenced by variables will be

affected by assignments, operators, functions and methods.

Practice implementing functions that loop over strings.

To follow along: create a class06.py script where we will write code together.

(in your cs146 folder)

2

Warm-up problem: write a function to calculate the

average low temperature from this forecast:

3

We should be able to write this ourselves but, just in

case, maybe Python can already do parts of this.

 Here is a bug-free version:

def average_temp(temps):

 """

 Calculates the average temperature from a list of temperatures.

 Args:

 temps: list of temperatures

 Returns:

 Average of items in temps.

 """

 n_days = len(temps)

 avg_temp = 0

 for i in range(n_days):

 avg_temp += temps[i]

 return avg_tmp / n_days

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

5

But yes, Python does know how to do this.

Actually, there are many things already built into Python.

sum: calculate the sum of the items.

min: get the minimum value.

max: get the maximum value.

sorted: get a new list in which the items are sorted.

>>> list_of_strings = ["this", "is", "a", "list", "of", "strings"]

>>> len(list_of_strings)

6

>>> min(list_of_strings)

"a"

>>> max(list_of_strings)

"this"

>>> temps = [58, 58, 60, 54, 56, 45, 44, 46, 42, 42, 45, 45, 46, 47]

>>> sum(temps) / len(temps)

49.142857142857146

6

Functions versus methods (methods are functions defined for

"objects" which we call using . on that object).

>>> help(sum)

...

>>> s = "Hi CSCI0146" # s is an instance of a str

>>> s.index("C")

3

>>> s.count("0")

1

How are we supposed to know what methods are defined??

dir(type_name) or dir(variable_name)

>>> dir(str)

...

>>> s = "Hi CSCI0146"

>>> dir(s)

...

Investigate! index, count, lower, upper, capitalize, replace,

swapcase.

7

Question 1: what is the value of t after this code executes?

>>> help(str.replace)​

replace(self, old, new, count=-1, /)​

 Return a copy with all occurrences of substring old replaced by new.

>>> s = 'Mississippi'​

>>> t = len(s.replace('ss', 'a'))

A. 11

B. "ss"

C. 9

D. "Miaaiaaippi"​

8

Question 2: what is the value of t after this code executes?

>>> help(str.replace)​

replace(self, old, new, count=-1, /)​

 Return a copy with all occurrences of substring old replaced by new.

>>> s = 'Mississippi'​

>>> t = s.upper().replace('ss', 'a')

A. "Mississippi"​

B. "Miaiaippi"​

C. "MISSISSIPPI"​

D. "MIAIAIPPI"​​

9

What about lists?

>>> dir(list)

...

>>> help(list.pop)

...

>>> list_of_strings = ["this", "is", "a", "list", "of", "strings"]

>>> list_of_strings.pop()

>>> list_of_strings

>>> list_of_strings.append("strings")

>>> list_of_strings

['this', 'is', 'a', 'list', 'of', 'strings']

Investigate! difference between list.sort and sorted

10

Recall the concept of (im)mutability from last class.

>>> s = "test"

>>> s.upper()

>>> s

"test"

>>> a = "hi"

>>> b = a

>>> a = "bye"

>>> b

"hi"

11

Question 4: what is the value of a after this code executes?

>>> a = [2, 4, 6, 8]​

>>> a.pop(2)

>>> a.remove(4)​

A. [2, 4]​

B. [6, 8]​

C. [2, 6]​

D. [2, 8]​

13

Quuestion 5: Assume value is defined and not empty. Which of the following is

valid only if value is a string or a list, but not for both types?​

B. value[0]

C.

D. All are valid for both types​

E. All are only valid for only one of string or list​

A. value.append("a")

for c in value:​

 print(c)

14

Question 7: what is the value of t after this code executes?

>>> s = "abc"

>>> t = s

>>>s = s.upper()

A. "abc"​

B. "ABC"​

C. "s"​

D. "S"​

16

Exercise: make a password generator! Define a function password_gen with

one parameter (n: the number of characters in the password to create).

Suggestions:
Define a string or list with a set of allowed characters.

Use random.randint to sample a character from a string or list of allowed characters.

from random import randint

CHARS = "abcdefghijklmnopqrstuvwxyz0123456789_!@#$%^&*"

def password_gen(length):

 """
 Generate a random password

 Args:
 length: number of characters in the password

 Returns:

 Password string

 """
 result = ""

 for i in range(length):
 result = result + CHARS[randint(0, len(CHARS)-1)]

 return result

17

Summary & Reminders

Use built-in functions and methods when you can! (and use dir and help to learn what/how to call them).

Have a look at feedback on Programming Assignment 1 (resubmit until Thursday October 2nd).

Programming Assignment 2 due Thursday (initial submission). Read the instructions carefully!

Quiz 3 on Friday (see notes linked on calendar).

Help hours: see go/smith (Smith Gakuya, ASI) and go/cshelp.

18

