Middlebury

CSCI 146: Intensive Introduction to Computing
Fall 2025

Lecture 5: Sequences | (Strings and Lists)

Goals for today

e Create string literals using both single-quotes and double-quotes.
e Explain the purpose of and use backslash-escaping in string literals.
e Describe a string as an ordered sequence of characters.

e Explain and use sequence operators (indexing, slicing) to obtain subsequences
(including individual characters) or transform a string.

e Apply knowledge of strings as a sequence to 1ists, a sequence of any type.

To follow along: createaclass05.py script where we will write code together.
(inyour cs146 folder)

Follow-up from last class: we can also nest for loops!

How can we print these patterns?

o° o0 0P o0© o° o©
o° o0 00 o0© o0 o©°
o° o0 0P o0© o° o©
o° o0 00 o0© o0 o©°
oD ™ D
o ™
™

1 def print rect(width, height, char): 1 def print triangle(size, char):

2 """Print an ASCII rectangle 2 """Print an ASCII lower triangle
3 3

4 Args: 4 Args:

5 width: number of columns of rectangle 5 size: number of rows/columns
6 height: number of rows of rectangle 6 char: Character to print

7 char: Character to print 7 e

8 n 8 for i in range(size):

9 for i in range(height): 9 for j in range(i+l):

10 for j in range(width): 10 print(char, end=" ")

11 print(char, end=" ") 11 print ()

12 print() # new line at end of the row

Question 1: What will this code print?

1 sum = 0 2
2 for i in range(5): L 4+
3 for j in range(5):
4 sum = sum + 1 *°*°+°"°1°
5 print(sum) a *‘*‘*‘*“'s
12 +247 42+2
£ \©
*\S
A.10 4+ 209
B.50
C.225 O +S x10 ¥1S +2°
D.500
e §oO

s |

Working with strings:

e Recap: + (concatenation: str + str), * (repetition: int * strorstr * int).

e Strings can be delimited by either single- or double-quotes (e.g. 'hello' or "hello").

e This allows us to include the otherin astring: 'Maybe a string has "quotes" in it'

e We can "escape" characters using a backslash. This means double-qoutes can be embedded into
double-quote delimited strings with \ " (same idea with \ '). Commonly used escape characteris \n
which means "start a new line in the string" (see help(print)).

e Accessing specific characters: use square brackets [] with index. Starts at 0.

e len(str) returns number of characters. Sowecanuse [Juptolen(s) - 1 (forsomestrings).

e We can also index the string with negative numbers: s[-1] gives the last character.

e Similartorange(start, stop, step) wecanslicestringsusings[start:stop:step].

e We can think of strings as sequences of characters:

1 s = '"hello' 1 s = '"hello'

2 for 1 in range(len(s)): 2 for ¢ 1in s:

3 # i is an integer 3 # c is a character
4 print(s[i]) 4 print(s)

Question 2: What is the value of s after this code executes?

1 s = "abc'
2 s = 'd'*3+s “ddéabc”
3 B = g 4 TO%3
4 s =s + 'q’ a m“‘*
dddabc1/"
A. "abcddd g"
B. "abcdddl R B R lq”
C. "abcdddg”

E. "dddabcq"

(0)

Investigate!
Using the stringmessage = 'Do you speak whale?'

l.message[13:18]

2. message[11:6]
3.message[1ll:6:-1]

4. message[::-1]
5.message[:5] + message[5:]
6. message[l::2]

speaking whale

1. "whale'

2. "' (an empty string)

3. 'kaeps’

. ' ?elahw kaeps uoy oD’
5. ' Do you speak whale?'
6. 'oyusekwae?'

AN

Question 3: Which of the following would turn the string
s = "I love CS!"into"CS I love!"?

A.s[-4:-1] + s[1] + s[:6] + s[8]
B.s[-3:-1] + s[1] + s[-1]
C.[s[-3:-1] + s[1] + s[:6] + s[-1]

Example: writing a function reverse that returns the reverse of
some input string s with/without slicing.

1 def reverse(s):

5 W

3 Returns the reverse of a string s
4

5 Args:

6 s: input string to reverse

7

38 Returns:

9 String with the characters of s reversed.
10

11 r = "'

12 for 1 in range(len(s)):

13 r =r + s[-(1 + 1)]

1 def reverse with slice(s): # and no docstring
2 return s[::-1]

A stris atype of sequence.

And a sequence is an "Abstract Data Type" which means that we can expect certain
functionalities to be implemented in any type that claims to be a sequence.

Think of the concept of a bag. What kinds of functions would we like from a bag?
e Hold things!

e Add/remove an item from the bag.

e Tell us how many items are in the bag.

e Empty the bag.

e Acertain bag might be good at some of these functions, but not others.

Sequence (bag) is an ADT, str (backpack) is a data structure that implements the sequence interface.

10

Question 4: what does this function do?

1 def mystery(s) ! h.“ (v ;
2 new s = " q 1
3 for ¢ in s: new - .k.
4 new s = Cc + new_s -5 -. .
5 return new s Wn-§ = ¢ +thea S
- 'e,\\’
A. Return a copy of s NoA-G = 'L +nen-$
~—3» B. Return the reverse of s ='Lew’

C. Return a string consisting of only the first character of s
D. Return a string consisting of only the final character of s I

olle.h

11

Question 5: What is the value of val after the above
code executes? 2

abé 3

1] val = (=== /

2 ftor. .1 in 'abc"-n——\

3 /for j in 'cde': J *3

4 val += 1 # equivalent to val = val + 1

Chov 12

+3

A.l /_—_
B. 3
s A
D. |9
E. 21

12

A 1ist Is another data structure that implements
the interface we expect for a sequence.

The main difference: 1ist can store ANYTHING.

e Accessitems with [] and an index.
e Can getthe number of items via len.
e We caniterate through itemsina list, similarto range and str.
e We can also create new 1ists by slicing.
e We can even assign valuesintoa 1ist with [] and anindex (unlike stx).
This raises the concept of "mutability" (whether we can "mutate" or "change" an object).

>> 1 =17, 4, 3, 6, 1, 2]

(7, 4, 3, 6, 1, 2]

>>> list("abcd") # converts an input string to a list by splitting characters
[lall IbI, Icl, ldl]

>> 1 =111, 2.0, True, [3, 2, 4, 5]] # lists can store ANYTHING !!!

[1, 2.0, True, [3, 2, 4, 5]]

In the last example, we can retrievethe 4 using 1[31[2].

13

Remember: a 1ist is mutable, so we can change the
items, but str are not mutable.

>>> names = ["mike", "Sulley", "Randall"]
>>> names[2] = "Boo"

>>> names

['mike', 'Sulley', 'Boo']

>>> names[0][0] = "Mike" # try to fix capitalization
TypeError: 'str' object does not support item assignment

e \We can also use + to concatenate lists and * to duplicate lists.

14

Summary

Recall the difference between Abstract Data Type and Data Structure. We will see other data structures, and
there is a whole class devoted to data structures (CSCI 201)!

Practice with slicing (either 1istsor strs).

Programming Assignment 2 due Thursday (initial submission). Read the instructions carefully!

Help hours: see go/smith (Smith Gakuya, ASI) and go/cshelp.

15

