
CSCI 146: Intensive Introduction to Computing

Fall 2025

Lecture 5: Sequences I (Strings and Lists)

1

Goals for today

Create string literals using both single-quotes and double-quotes.

Explain the purpose of and use backslash-escaping in string literals.

Describe a string as an ordered sequence of characters.

Explain and use sequence operators (indexing, slicing) to obtain subsequences

(including individual characters) or transform a string.

Apply knowledge of strings as a sequence to lists, a sequence of any type.

To follow along: create a class05.py script where we will write code together.

(in your cs146 folder)

2

Follow-up from last class: we can also nest for loops!

How can we print these patterns?

% % % %

% % % %

% % % %

% % % %

% % % %

% % % %

@

@ @

@ @ @

def print_rect(width, height, char):

 """Print an ASCII rectangle

 Args:

 width: number of columns of rectangle

 height: number of rows of rectangle

 char: Character to print

 """

 for i in range(height):

 for j in range(width):

 print(char, end=" ")

 print() # new line at end of the row

1

2

3

4

5

6

7

8

9

10

11

12

def print_triangle(size, char):

 """Print an ASCII lower triangle

 Args:

 size: number of rows/columns

 char: Character to print

 """

 for i in range(size):

 for j in range(i+1):

 print(char, end=" ")

 print()

1

2

3

4

5

6

7

8

9

10

11

3

Working with strings:

Recap: + (concatenation: str + str), * (repetition: int * str or str * int).

Strings can be delimited by either single- or double-quotes (e.g. 'hello' or "hello").

This allows us to include the other in a string: 'Maybe a string has "quotes" in it'

We can "escape" characters using a backslash. This means double-qoutes can be embedded into

double-quote delimited strings with \" (same idea with \'). Commonly used escape character is \n

which means "start a new line in the string" (see help(print)).

Accessing specific characters: use square brackets [] with index. Starts at 0.

len(str) returns number of characters. So we can use [] up to len(s) - 1 (for some string s).

We can also index the string with negative numbers: s[-1] gives the last character.

Similar to range(start, stop, step) we can slice strings using s[start:stop:step].

We can think of strings as sequences of characters:

s = 'hello'

for i in range(len(s)):

 # i is an integer

 print(s[i])

1

2

3

4

s = 'hello'

for c in s:

 # c is a character

 print(s)

1

2

3

4

5

Investigate!

Using the string message = 'Do you speak whale?'

1. message[13:18]

2. message[11:6]

3. message[11:6:-1]

4. message[::-1]

5. message[:5] + message[5:]

6. message[1::2]

1. 'whale'

2. '' (an empty string)

3. 'kaeps'

4. '?elahw kaeps uoy oD'

5. 'Do you speak whale?'

6. 'oyusekwae?'

7

Question 3: Which of the following would turn the string

s = "I love CS!" into "CS I love!"?

A. s[-4:-1] + s[1] + s[:6] + s[8]​

B. s[-3:-1] + s[1] + s[-1]​

C. s[-3:-1] + s[1] + s[:6] + s[-1]​​​

8

Example: writing a function reverse that returns the reverse of

some input string s with/without slicing.

def reverse(s):

 """

 Returns the reverse of a string s

 Args:

 s: input string to reverse

 Returns:

 String with the characters of s reversed.

 """

 r = ''

 for i in range(len(s)):

 r = r + s[-(i + 1)]

1

2

3

4

5

6

7

8

9

10

11

12

13

def reverse_with_slice(s): # and no docstring

 return s[::-1]

1

2

9

A str is a type of sequence.

And a sequence is an "Abstract Data Type" which means that we can expect certain

functionalities to be implemented in any type that claims to be a sequence.

Think of the concept of a bag. What kinds of functions would we like from a bag?
Hold things!

Add/remove an item from the bag.

Tell us how many items are in the bag.

Empty the bag.

A certain bag might be good at some of these functions, but not others.

Sequence (bag) is an ADT, str (backpack) is a data structure that implements the sequence interface.

10

A list is another data structure that implements

the interface we expect for a sequence.

The main difference: list can store ANYTHING.

Access items with [] and an index.

Can get the number of items via len.

We can iterate through items in a list, similar to range and str.

We can also create new lists by slicing.

We can even assign values into a list with [] and an index (unlike str).

This raises the concept of "mutability" (whether we can "mutate" or "change" an object).

>>> l = [7, 4, 3, 6, 1, 2]

[7, 4, 3, 6, 1, 2]

>>> list("abcd") # converts an input string to a list by splitting characters

['a', 'b', 'c', 'd']

>>> l = [1, 2.0, True, [3, 2, 4, 5]] # lists can store ANYTHING !!!

[1, 2.0, True, [3, 2, 4, 5]]

In the last example, we can retrieve the 4 using l[3][2].

13

Remember: a list is mutable, so we can change the

items, but str are not mutable.

>>> names = ["mike", "Sulley", "Randall"]

>>> names[2] = "Boo"

>>> names

['mike', 'Sulley', 'Boo']

>>> names[0][0] = "Mike" # try to fix capitalization

TypeError: 'str' object does not support item assignment

We can also use + to concatenate lists and * to duplicate lists.

14

Summary

Recall the difference between Abstract Data Type and Data Structure. We will see other data structures, and

there is a whole class devoted to data structures (CSCI 201)!

Practice with slicing (either lists or strs).

Programming Assignment 2 due Thursday (initial submission). Read the instructions carefully!

Help hours: see go/smith (Smith Gakuya, ASI) and go/cshelp.

15

