
CSCI 146: Intensive Introduction to Computing

Fall 2025

Lecture 4: Loops and the turtle

1

Goals for today

Explain when loops are used.

Describe the execution of a for loop.

Use loops for more complex turtle drawings.

Practice implementing loops and nested loops.

To follow along: create a class04.py script where we will write code together.

(in your cs146 folder)

First, another note about the modulus operator (%):

r = a % b means r = a - b * math.floor(a / b)

(type(r) depends on type(a) and type(b))

2

The turtle module allows us to make drawings with Python!

forward, backward: move forward/backward by a certain number of units.

left, right: turn left/right by a certain number of degrees.

speed: set drawing speed (0 is no animation, 1 is slowest, 10 is fast).

shape: set the shape of the turtle (e.g. shape('turtle') makes it a true turtle).

stamp: stamps the turtle at the current location.

setpos(x, y): moves the turtle to the location with coordinates x, y.

penup/pendown: lifts or puts down the pen to control whether drawing occurs.

pencolor: sets the drawing color.

fillcolor: sets the color to used when filling between begin_fill and end_fill

begin_fill/end_fill: delimits filling a shape.

circle: draws a circle.

3

Example turtle program to draw a square.

from turtle import *

def draw_square():
 forward(100)

 right(90)
 forward(100)

 right(90)

 forward(100)
 right(90)

 forward(100)
 right(90)

draw_square()

1

2

3
4

5
6

7

8
9

10
11

12

13

Hmm. This doesn't look very DRY. How can we make this better?

4

Anatomy of a for-loop.

Example:

range(0, 10) creates a sequence of integers

starting at 0 up to 9 (i.e. up to but not including 10).

for iteration_variable in sequence:

 # do something repeatedly, maybe using iteration_variable

1

2

def print_loop(n):

 """ Print numbers from 0 until (but not including) n """

 print("Begin list of numbers")

 for i in range(n):

 print(i)

 print("End list of numbers")

print_loop(5)

1

2

3

4

5

6

7

8

from turtle import *

def draw_square():
 for i in range(4):

 forward(100)

 right(90)

1
2

3
4

5

6

5

Question 1: What will this code print?

A. 0

B. 9

D. 45​

E. 55​

sum = 0

for i in range(10):​

 sum = sum + 1​

print(sum)

1

2

3

4

C. 10

6

Question 2: What will this code print?

A. 0

B. 9

C. 10

E. 55​

sum = 0

for i in range(10):​

 sum = sum + i

print(sum)

1

2

3

4

D. 45​

7

Example: drawing a spiral.

A good example is side = 200 and angle = 89

def spiral(sides, angle):

 """ Draw spiral with sides steps and update of angle """

 for i in range(sides):

 forward(i*5)

 right(angle)

1

2

3

4

5

6

8

Example: wandering turtle.

def walk(num_steps, step_size):

 """ Random walk with num_steps steps of step_size """

 for i in range(num_steps):

 angle = randint(-90, 90)

 right(angle)

 forward(step_size)

1

2

3

4

5

6

9

More interesting shapes: Fibonacci spiral.

First try to find a pattern in the radius (hint: they are Fibonacci numbers).

How will you compute these numbers with a for-loop?

>>> import turtle

>>> help(turtle.circle)

>>> turtle.circle(100, 90) # draws a quarter circle with radius of 100

1

2

3

10

Possible solution to golden_spiral.

def golden_spiral(radius, segments):

 """

 Draw a Fibonacci spiral using Turtle. turtle package must be imported into namespace.

 Args:
 radius: Starting radius of the spiral

 segments: Number of quarter circle segments to draw after initial quarter circle.

 Must be >= 2.

 Returns:
 None

 """

 a = radius
 circle(a, 90)

 b = radius
 circle(b, 90)

 # range can take two arguments, start and stop. We set the start at two since the first
 # segments are already drawn

 for i in range(2, segments):

 c = a + b
 circle(c, 90)

 # Prepare for the next iteration of the loop
 a = b

 b = c

1

2

3
4

5
6

7

8
9

10
11

12

13
14

15
16

17
18

19

20
21

22
23

24

11

Note that we can also nest for loops!

How can we print these patterns?

% % % %

% % % %

% % % %

% % % %

% % % %

% % % %

@

@ @

@ @ @

def print_rect(width, height, char):

 """Print an ASCII rectangle

 Args:

 width: number of columns of rectangle

 height: number of rows of rectangle

 char: Character to print

 """

 for i in range(height):

 for j in range(width):

 print(char, end=" ")

 print() # new line at end of the row

1

2

3

4

5

6

7

8

9

10

11

12

def print_triangle(size, char):

 """Print an ASCII lower triangle

 Args:

 size: number of rows/columns

 char: Character to print

 """

 for i in range(size):

 for j in range(i+1):

 print(char, end=" ")

 print()

1

2

3

4

5

6

7

8

9

10

11

12

Summary

for-loops are good for repeating blocks of code.

We used range to generate a sequence of numbers.

Remember that range(n) creates numbers from 0 to n - 1.

Next week: other types of sequences.

Office hours:

Monday 10 - 11am, Tuesday 11am - 11:30am (my office, room 219) and Thursdays 2:30 - 4:30pm (room 224).

Other help hours: see go/smith (Smith Gakuya, ASI) and go/cshelp.

Quiz 2 (15 minutes) and Lab 2 on Friday.

PA1 (initial) submission due tomorrow.

What I did this summer CS seminar (Part 2) on Friday at 12:30pm (with pizza)!

13

