
CSCI 146: Intensive Introduction to Computing

Fall 2025

Lecture 2: Expressions, variables, functions

1

Goals for today

Evaluate arithmetic expressions over integers and floats.

Describe the concept of "type" and operations between types.

Describe the purpose of a variable and perform variable assignment.

Given a function definition, identify the name, function parameters and body.

Distinguish between global variables, function parameters and local variables.

Determine the return value of a function.

Use built-in functions such as print, str, int.

Implement simple functions.

How did installing Python and VS Code go?

 or on our Reactions page.

2

Recall our Picobot problem: input, outputs (goals),

algorithm and implementation.

STATE SURROUNDINGS -> MoveDirection NewState

"If Picobot is in state 0 and senses xxxS (only a wall to the south)

it should move north and stay in state 0”

0 xxxS -> N 0

“If Picobot is in state 0 and senses nothing to the north and

anything (* wildcard) to the east, west, and south (wall or not)

it should move north and stay in state 0”​

0 x*** -> N 0​

1

2

3

4

5

6

7

8

3

We'll be using Python to solve problems this semester.

Assuming you already downloaded the cs146 folder, and also downloaded + installed Python

(3.13) and VS Code (if not, please follow the links in the notes from last class).

Open VS Code and then File -> Open Folder and open your cs146 folder.

Install the middpy extension (if not done already) or update the extension (I made changes after

Monday, sorry! Make sure you update to version 1.0.4).

Click Setup Python (if not done already).

To open the shell:

If you have a file open: click the button at the top-right that looks like a terminal .

If you don't have a file open: click Python Shell in the bottom-right.

A terminal should open and you should see >>> which is "prompting" us for input.

4

Question 1: Which of the following gives a result of 16 in Python?

A. 8 // 2 * 4

B. 8 / (2 * 2 + 2)

C. 8 // (2 * 4)

D. None of the above.

5

Variables allow us to save intermediate results and

use them again later.

Syntax of assignment: <variable> = <expression>

1. First, right-hand-side (RHS) is evaluated.

2. The resulting value is then stored in memory.

3. The variable name on the left-hand-side (LHS) points to the memory location with the result.

4. But the assignment statement x = 7 + 2 does not itself evaluate to anything which is why

nothing is printed (we would need to print(x) to see what value x stores).

>>> x = 7 + 21

Variable names can start with any LETTER (a-z, A-Z), or UNDERSCORE (_),

and can contain digits (0-9) but cannot start with a digit.

6

Question 3: At the end of this code, what will the memory look like?

y = 3

x = 7

y = 3 + 2 + 1

1

2

3

A.

y: 6

B.

y: 3

x: 7

y: 6

C.

y: 6

x: 7

D.

y: 3

x: 7

8

How much money in...

1 quarter, 2 dimes?

5 quarters, 10 dimes?

7 quarters, 3 dimes, 2 nickels?

9 nickels, 1 quarter, 1 toonie?

This is kind of annoying to do repeatedly. There must be a better way.

Functions!

9

First, let's talk about built-in functions.

Things to consider:
Arguments (expressions within parentheses) are evaluated from left to right.

Expression results are "bound" to what the function will use as function parameters.

Expressions and statements in the body of the function are then executed.

If necessary, a value may be returned.

A critical component to programming and abstraction is writing our own functions.

>>> print("hello cs 146!")

"hello cs 146!"

>>> y = int("3")

>>> z = str(4)

1

2

3

4
5

6

10

Question 4: What would this code print?​

A. 6

B. 24

C. 4x

D. Nothing, this code produces a syntax error​

x = 6​

print(4x)

1

2

11

Working in the shell is good for short expressions or to try

things out. Really we want to write programs in scripts.

Click File -> New File, select Python File, then save it (File -> Save), name it class02.py

Be careful that this is saved directly in cs146 and not in cs146/.venv or cs146/.vscode.

When a file is open, you should see some buttons at the top-right (terminal, rocket and bug).

Let's investigate! Note: Use the button to "run" your script.

12

Anatomy of a function through an example:

computing .f(x) = x2

def f(x):

 # note we can also use x ** 2, using the ** (exponentiation) operator

 return x * x

1

2

3

def is a keyword and has a special meaning in Python: you can't name a variable def.

Everything in the parentheses are the parameters, e.g. x. There can be zero or more parameters and

are only defined within the function body/scope.

The body of the function is indented with respect to the definition.

The return keyword will terminate the function at that execution point and provide the result to

the "caller". If there is no return, then the function returns None.

Execute your class02.py script with the button and let's call our function.

13

Question 5: Which of the following does not contain a function call?​

A. type(4.5)

B. area(2, 9)

C.

D. print("hello")​

E. None of the above, all contain function calls​.​

def add_one(x):​
 return x + 1

1
2

14

Example: writing a function to calculate the value of

an investment.

f(P , r, t) = P(1 + r)t

 is the principal, is the rate and is time in years.P r t

Advice for writing functions:
Figure out what you want this function to do.

Define a contract for what the function expects and what will be returned (if any).

Write out the header def compound_interest(principal, rate, years):

Implement the body of the function.

Calculates investment value with interest compounded yearly
def compound_interest(principal, rate, years):

 amount = principal * ((1 + rate) ** years)
 return amount

value = compound_interest(100, 0.03, 2)
print("Value = " + str(value))

1
2

3
4

5

6
7

16

Your turn! Work with someone to write a function to calculate

the cost of an In-N-Out burger from the "special menu."

Goal: calculate the price of a 100x100 and a 100x50 In-N-Out burger.

Assume a single hamburger (bun + patty) costs $1.50, and a cheeseburger (bun + patty + cheese)

costs $1.75 and a double-double costs $2.65.

def innout_price(hamburger, cheeseburger, doubledouble, patties, cheeses):

 """Compute the price of an In-n-Out burger with arbitrary numbers of patties and slices of cheeses

 Args:

 hamburger: Price of a hamburger

 cheeseburger: Price of a cheeseburger

 doubledouble: Price of a Double-Double
 patties: Number of patties (must be at least 1)

 cheeses: Number of cheese slices (can be zero or more)

 Returns:

 Price of burger
 """

 patty_and_cheese = doubledouble - cheeseburger

 cheese = cheeseburger - hamburger

 patty = patty_and_cheese - cheese
 return hamburger + (patties - 1) * patty + cheeses * cheese

1

2
3

4

5

6

7
8

9

10

11

12
13

14

15

16
17

17

Summary

The shell is good to test a few small expressions, scripting is better for complete programs.

Be careful with types: we saw int, float and str types.

Functions are useful for writing code blocks we will re-use with different input values.

Be careful with the scope of the variables in a function (local versus global variables).

First quiz on Friday (about 15 minutes at the beginning of class); notes (cheat sheet) linked on calendar.
I would recommend attempting the PrairieLearn practice problems.

Please complete the Introduction Survey linked on the calendar.

Come to office hours! Monday 10 - 11am (my office, room 219) and Thursdays 2:30 - 4:30pm (room 224).

Come to the What I did this summer CS seminar on Friday at 12:30pm (with pizza)!

18

